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A Additional Tables and Figures

Distribution of Projects by Year in Our Data

Year Num Projects Percent Cumul Percent

1 1998 1 0.227 0.227
2 1999 5 1.136 1.364
3 2000 5 1.136 2.500
4 2001 20 4.545 7.045
5 2002 27 6.136 13.182
6 2003 26 5.909 19.091
7 2004 25 5.682 24.773
8 2005 37 8.409 33.182
9 2006 21 4.773 37.955
10 2007 32 7.273 45.227
11 2008 53 12.045 57.273
12 2009 46 10.455 67.727
13 2010 61 13.864 81.591
14 2011 32 7.273 88.864
15 2012 24 5.455 94.318
16 2013 19 4.318 98.636
17 2014 6 1.364 100

Table 1: Distribution of projects by year in our data

Estimated Number of Employees for Most Common Firms

Bidder Name # Employees # Auctions Bid # Auctions Won

MIG Corporation 80 297 38
Northern Constr Services LLC 80 286 26

SPS New England Inc 75 210 58
ET&L Corp 1 201 26

B&E Construction Corp 9 118 16
NEL Corporation 68 116 36

Construction Dynamics Inc 22 113 10
S&R Corporation 20 111 16

New England Infrastructure 35 95 6
James A Gross Inc 7 78 7

Table 2: All 24 most common firms in our sample are privately owned, and so there is no publicly
available, verifiable information on their revenues or expenses. The numbers of employees
presented here were drawn from Manta, an online directory of small businesses, and
cross-referenced with LinkedIn, on which a subset of these firms list a range of their employee
counts, as of November 2018. Note that there is some ambiguity as to who “counts” as an
employee, as such firms often hire additional construction laborers on a project-by-project basis.
The “family owned” label is drawn from the firms’ self-descriptions on their websites.
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Bid Level-Weighted Bins

We replicate the main graphs from Section 4, weighting the dots by the average bid levels in the

bins that they represent. This demonstrates that outlier dots are generally relatively small, minor

items, and that overestimated items are not rare.

(a) Replication of Figure 3a with weighted bins. (b) Replication of Figure 4a with weighted bins.

Figure 1

Items with the highest and lowest quantity variance To demonstrate the types of

items that often have high and low quantity variance, we plot the frequency of items with at least

10 item-auction observations with estimated standard deviations among the highest and lowest 5%.

Figure 2: Trimmed description of items with at least 10 instances among the 5% lowest σ̂t,n
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Figure 3: Trimmed description of items with at least 10 instances among the 5% highest σ̂t,n

B Illustrative Example

Consider the following simple example of infrastructure procurement bidding. Two bidders compete

for a project that requires two types of inputs to complete: concrete and traffic cones. MassDOT

(“the DOT” for short) estimates that 10 tons of concrete and 20 traffic cones will be necessary to

complete the project. Upon inspection, the bidders determine that the actual quantities of each

item that will be used—random variables that we will denote qac and qar for concrete and traffic

cones, respectively—are normally distributed with means E[qac ] = 12 and E[qar ] = 16 and variances

σ2
c = 2 and σ2

r = 1.1 We assume that the actual quantities are exogenous to the bidding process,

and do not depend on who wins the auction in any way. Furthermore, we will assume that the

bidders’ expectations are identical across both bidders.2

1As we discuss in Section 5, we assume that the distributions of qac and qar are independent conditional on
available information regarding the auction. This assumption, as well as the assumption that the quantity
distributions are not truncated at 0 (so that quantities cannot be negative) are made for the purpose of
computational traceability in our structural model. If item quantities are correlated, bidders’ risk exposure
is higher, and so our results can be seen as a conservative estimate of this case.

2These assumptions align with the characterization of highway and bridge projects in practice: the
projects are highly standardized and all decisions regarding quantity changes must be approved by an on-
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The bidders differ in their private costs for implementing the project. They have access to the

same vendors for the raw materials, but differ in the cost of storing and transporting the materials

to the site of construction as well as the cost of labor, depending on the site’s location, the state

of their caseload at the time and firm-level idiosyncrasies. We describe each bidder’s cost as a

multiplicative factor α of the market-rate cost estimate for each item: cc = $8/ton for each ton of

Concrete and cr = $12/pack for each pack of 100 traffic cones. Each bidder i knows her cost type

αi at the time of bidding, as well as the distribution (but not realization) of her opponent’s type.

To participate in the auction, each bidder i submits a unit bid for each of the items: bi,c and

bi,r. The winner of the auction is then chosen on the basis of her score: the sum of her unit bids

multiplied by the DOT’s quantity estimates:

si = 10bi,c + 20bi,r.

Once a winner is selected, she will implement the project and earn net profits of her unit bids, less

the unit costs of each item, multiplied by the realized quantities of each item that are ultimately

used. At the time of bidding, these quantities are unrealized samples of random variables.

Bidders are endowed with a standard CARA utility function over their earnings from the project.

For simplicity in this example, we assume that the bidders share a common constant coefficient of

absolute risk aversion γ:

u(π) = 1− exp(−γπ).

Bidders are exposed to two sources of risk: (1) uncertainty over winning the auction; (2) uncertainty

over the profits that they would earn at the realized ex-post quantity of each item.

The profit π that bidder i earns is either 0, if she loses the auction, or

π(bi, αi, c,q
a) = qac · (bi,c − αicc) + qar · (bi,r − αicr),

if she wins the auction. Bidder i’s expected utility at the time of the auction is therefore given by:

E[u(π(bi, αi, c,q
a))] =

1− Eqa [exp (−γ · π(bi, αi, c,q
a))]︸ ︷︷ ︸

Expected utility conditional on winning

 × (Pr{si < sj}).︸ ︷︷ ︸
Probability of winning with si = 10bi,c + 20bi,r

That is, bidder i’s expected utility from submitting a set of bids bi,c and bi,r is the product of the

utility that she expects to get (given those bids) if she were to win the auction, and the probability

that she will win the auction at those bids. The expectation of utility conditional on winning is

with respect to the realizations of the item quantities qac and qar , entirely.

As the ex-post quantities are distributed as independent Gaussians, the expected utility term

above can be rewritten in terms of the certainty equivalent of bidder i’s profits conditional on

site DOT official, thereby limiting contractors’ ability to influence ex-post quantities.
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winning:3

1− exp (−γ · CE(bi, αi, c,q
a)) ,

where the certainty equivalent of profits CE(bi, αi, c,q
a) is given by:

E[qac ] · (bi,c − αicc) + E[qar ] · (bi,r − αicr)︸ ︷︷ ︸
Expection of Profits

−
[
γσ2

c

2
· (bi,c − αicc)

2 +
γσ2

r

2
· (bi,r − αicr)

2

]
.︸ ︷︷ ︸

Variance of Profits

(1)

Furthermore, as we discuss in Section 5, the optimal selection of bids for each bidder i can be

described as the solution to a two-stage problem:

Inner: For each possible score s, choose the bids bc and br that maximize CE({bc, br}, αi, c,q
a),

subject to the score constraint: 10bc + 20br = s.

Outer: Choose the score s∗(αi) that maximizes expected utility E[u(π(bi(s), αi))], where bi(s) is the

solution to the inner step, evaluated at s.

That is, at every possible score that bidder i might consider, she chooses the bids that sum to

s for the purpose of the DOT’s evaluation of who will win the auction, and maximize her certainty

equivalent of profits conditional on winning. She then chooses the score that maximizes her total

expected utility.

To see how this decision process can generate bids that appear mathematically unbalanced,

suppose, for example, that the common CARA coefficient is γ = 0.05, and consider a bidder in

this auction who has type αi = 1.5.4 Suppose, furthermore, that the bidder has decided to submit

a total score of $500. There are a number of ways in which the bidder could construct a score of

$500. For instance, she could bid her cost on concrete, bi,c = $12, and a dollar mark-up on traffic

cones: bi,r = ($500 − $12 × 10)/20 = $19. Alternatively, she could bid her cost on traffic cones,

bi,r = $18, and a two-dollar mark-up on traffic cones: bi,c = ($500 − $18 × 20)/10 = $14. Both of

these bids would result in the same score, and so give the bidder the same chances of winning the

auction. However, they yield very different expected utilities to the bidder. Plugging each set of

bids into equation (1), we find that the first set of bids produces a certainty equivalent of:

12× ($0) + 16× ($1)− 0.05× 2

2
× ($0)2 − 0.05× 1

2
× ($1)2 = $15.98,

whereas the second set of bids produces a certainty equivalent of

12× ($2) + 16× ($0)− 0.05× 2

2
× ($2)2 − 0.05× 1

2
× ($0)2 = $23.80.

In fact, further inspection shows that the optimal bids giving a score of $500 are bi,c = $47.78

3See Section 5 and the Appendix for a detailed derivation.
4That is, for each ton of concrete that will be used will cost, the bidder incur a cost of αi×cc = 1.5×$8 =

$12, and for each pack of traffic cones that will be used, she will incur a cost of αi × cr = 1.5× $12 = $18.
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and bi,r = $1.12, yielding a certainty equivalent of $87.98. The intuition for this is precisely

that described by Athey and Levin (2001), and the contractors cited by Stark (1974): the bidder

predicts that concrete will over-run in quantity – she predicts that 12 tons will be used, whereas

the DOT estimated only 10 – and that traffic cones will under-run – she predicts that 16 will be

used, rather than the DOT’s estimate of 20. When the variance terms aren’t too large (relatively),

the interpretation is quite simple: every additional dollar bid on concrete is worth approximately

12/10 in expectation, whereas every additional dollar bid on traffic cones is worth only 16/20.

However, the incentive to bid higher on items projected to over-run is dampened when the

variance term is relatively large. This can arise when the coefficient of risk aversion is relatively

high or when the variance of an item’s ex-post quantity distribution is high. More generally,

as demonstrated in equation (1), the certainty equivalent of profits is increasing in the expected

quantity of each item, E[qac ] and E[qar ], but decreasing in the variance of each item σ2
c and σ2

r .

(a) Score = $500 (b) Score = $1000

Figure 4: Certainty equivalent as a function of her unit bid on traffic cones, for the example
bidder submitting a score of $500 or $1,000.

Moreover, the extent of bid skewing can depend on the level of competition in the auction.

Figure 4 plots the bidder’s certainty equivalent as a function of her unit bid on traffic cones when

she chooses to submit a total score of (a) $500, and when she chooses to submit a score of (b)

$1,000. In the first case, the bid that optimizes the certainty equivalent is very small, bi,r = $1.12.

In the second case, however, the optimal bid is much higher at bi,r = $23.33. The reason for this is

that a low bid on traffic cones implies a high bid on concrete. A high markup on concrete decreases

the bidder’s certainty equivalent at a quadratic rate. Thus, as the score gets higher, there is more

of an incentive to spread markups across items, rather than bidding very high on select items, and

very low on others.

B.1 Bid Skewing in Equilibrium

As we discuss in Section 5, the auction game described above has a unique Bayes Nash Equilibrium.

This equilibrium is characterized following the two-stage procedure described in Appendix A: (1)
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given an equilibrium score s(α), each bidder of type α submits the vector of unit bids that maximizes

her certainty equivalent conditional on winning, and sums to s(α); (2) The equilibrium score is

chosen optimally, such that there does not exist a type α and an alternative score s̃, so that a

bidder of type α can attain a higher expected utility with the score s̃ than with s(α).

The optimal selection of bids given an equilibrium score depends on the bidders’ expectations

over ex-post quantities and the DOT’s posted estimates, as well as on the coefficient of risk aversion

and the level of uncertainty in the bidders’ expectations. High over-runs cause bidders to produce

more heavily skewed bids, whereas high risk aversion and high levels of uncertainty push bidders

to produce more balanced bids.

In addition to influencing the relative skewness of bids, these factors also have a level effect on

bidder utility. Higher expectations of ex-post quantities raise the certainty equivalent conditional

on winning for every bidder. Higher levels of uncertainty (and a higher degree of risk aversion),

however, induce a cost for bidders that lowers the certainty equivalent. Consequently, higher levels

of uncertainty lower the value of participating for every bidder and result in less aggressive bidding

behavior, and higher costs to the DOT in equilibrium.

To demonstrate this, we plot the equilibrium score, unit-bid distribution and ex-post revenue

for every bidder type α in our example. To illustrate the effects of risk and risk aversion on bidder

behavior and DOT costs, we compare the equilibria in four cases. First, we compute the equilibrium

in our example when bidders are risk averse with CARA coefficient γ = 0.05, and when bidders are

risk neutral (e.g. γ = 0). To hone in on the effects of risk in particular, and not mis-estimation,

we will assume that the bidders’ expectations of ex-post quantities are perfectly correct (e.g. the

realization of qac is equal to E[qac ], although the bidders do not know this ex-ante, and still assume

their estimates are noisy with Gaussian error).

Next, we compute the equilibrium in each case under the counterfactual in which uncertainty

regarding quantities is eliminated. In particular, we consider a setting in which the DOT is able

to discern the precise quantities that will be used, and advertise the project with the ex-post

quantities, rather than imprecise estimates. The DOT’s accuracy is common knowledge, and so

upon seeing the DOT numbers in this counterfactual, the bidders are certain of what the ex-post

quantities will be (e.g. σ2
c = σ2

r = 0).

Risk Neutral Bidders Risk Averse Bidders

Noisy Quantity Estimates $326.76 $317.32
Perfect Quantity Estimates $326.76 $296.26

Table 3: Comparison of Expected DOT Costs

In Table 3, we present the expected (ex-post) DOT cost in each case. This is the expectation

of the amount that the DOT would pay the winning bidder qac bw,c + qar bw,r at the equilibrium

bidding strategy in each setting, taken with respect to the distribution of the type of the lowest
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(winning) bidder.5 When bidders are risk neutral (γ = 0), the equilibrium cost to the DOT does

not change when the DOT improves its quantity estimates. The reason for this is that since γ = 0,

the variance term in Equation (1) is zero regardless of the level of the noise in quantity predictions.

As the bidders’ quantity expectations E[qac ] and E[qar ] are unchanged, the expected revenue of the

winning bidder (corresponding to the expected cost to the DOT) is unchanged as well.

(a) Risk Neutral Bidders (b) Risk Averse Bidders: γ = 0.05

Figure 5: Equilibrium DOT Cost/Bidder Revenue by Bidder Type

(a) Risk Neutral Bidders (b) Risk Averse Bidders: γ = 0.05

Figure 6: Equilibrium Score Functions by Bidder Type

In Figure 5a, we plot the revenue that each type of bidder expects to get in equilibrium when

bidders are risk neutral. The red line corresponds to the baseline setting, in which the DOT

underestimates the ex-post quantity of concrete, and overestimates the ex-post quantity of traffic

cones. The black line corresponds to the counterfactual in which both quantities are precisely

estimated, and bidders have no residual uncertainty about what the quantities will be. While the

ex-post cost to the DOT is the same whether or not the DOT quantity estimates are correct, the unit

bids and resulting scores that bidders submit are different. In Figure 6a, we plot the equilibrium

score for each bidder type when bidders are risk neutral. The score at every bidder type is smaller

5In order to simulate equilibria, we need to assume a distribution of bidder types. For this ex-
ample, we assume that bidder types are distributed according to a truncated lognormal distribution,
α ∼ LogNormal(0, 0.2) that is bounded from above by 2.5. There is nothing special about this particu-
lar choice, and we could easily have made others with similar results.
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under the baseline than under the counterfactual in which the DOT discerns ex-post quantities.

This is because the scores in the counterfactual correspond to the bidders’ expected revenues, while

the scores in the baseline multiply bids that are skewed to up-weight over-running items by their

under-estimated DOT quantities. See the Appendix for a full derivation and discussion of the risk

neutral case.

(a) Risk Neutral Bidders (b) Risk Averse Bidders: γ = 0.05

Figure 7: Equilibrium Unit Bids by Bidder Type

Figure 7a plots the unit bid that each type of bidder submits in equilibrium when bidders are

risk neutral. As before, the red lines correspond to the baseline setting in which the DOT mis-

estimates quantities, whereas the black lines correspond to the counterfactual setting in which the

DOT discerns ex-post quantities perfectly. The solid line in each case corresponds to the unit bid

for concrete bc(α) that each α type of bidder submits in equilibrium. The dashed line corresponds

to the equilibrium unit bid for traffic cones br(α) for each bidder type. Notably, in every case,

the optimal bid for each bidder puts the maximum possible amount (conditional on the bidder’s

equilibrium score) on the item that is predicted to over-run the most, and $0 on the other item.

This is a direct implication of optimal bidding by risk neutral bidders, absent an external impetus

to do otherwise. As noted by Athey and Levin (2001), this suggests that the observations of interior

or intermediately-skewed bids in our data, as well as in Athey and Levin’s, are inconsistent with

a model of risk neutral bidders. Other work, such as Bajari, Houghton, and Tadelis (2014) have

rationalized interior bids by modeling a heuristic penalty for extreme skewing that represents a fear

of regulatory rebuke. However, no significant regulatory enforcement against bid skewing has ever

been exercised by MassDOT, and discussions of bidding incentives in related papers as well as in

Athey and Levin (2001) suggest that risk avoidance is a more likely dominant motive.

In Figures 5b, 6b and 7b, we plot the equilibrium revenue, score and bid for every bidder type,

when bidders are risk averse with the CARA coefficient γ = 0.05. Unlike the risk-neutral case, the

DOT’s elimination of uncertainty regarding quantities has a tangible impact on DOT costs. When

the DOT eliminates quantity risk for the bidders, it substantially increases the value of the project

for all of the bidders, causing more competitive bidding behavior. Seen another way, uncertainty

regarding ex-post quantities imposes a cost to the bidders, on top of the cost of implementing

the project upon winning. In equilibrium, bidders submit bids that allow them to recover all of
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their costs (plus a mark-up). When uncertainty is eliminated, the cost of the project decreases,

and so the total revenue needed to recover each bidder’s costs decreases as well. Note, also, that

the elimination of uncertainty results in different levels of skewing across the unit bids of different

items. Whereas under the baseline, bidders with types α > 1.6 place increasing interior bids on

traffic cones, when risk is eliminated, this is no longer the case. However, this is subject to a tie

breaking rule—when the DOT perfectly predicts ex-post quantities, there are no over-runs, and so

there is no meaningful different to overbid on one item over the other. The analysis of the optimal

bid (conditional on a score) here is analogous to that under risk neutrality, and so we defer details

to the appendix.

CARA Coeff Baseline No Quantity Risk Pct Diff

0 $326.76 $326.76 0%
0.001 $326.04 $325.62 0.13%
0.005 $323.49 $321.41 0.64%
0.01 $321.01 $316.88 1.29%
0.05 $317.32 $296.26 6.64%
0.10 $319.83 $285.57 10.71%

Table 4: Comparison of expected DOT costs under different levels of bidder risk aversion

While the general observation that reducing uncertainty may result in meaningful cost savings to

the DOT, the degree of these savings depends on the baseline level of uncertainty in each project, as

well as the degree of bidders’ risk aversion and the level of competition in each auction (constituted

by the distribution of cost types and the number of participating bidders). To illustrate this,

we repeat the exercise summarized in Table 3 over different degrees of risk aversion and different

levels of uncertainty. In Table 4, we present the expected DOT cost under the baseline example

and under the counterfactual in which the DOT eliminates quantity risk, as well as the percent

difference between the two, for a range of CARA coefficients.6 The bolded row with a CARA

coefficient of 0.05 corresponds to the right hand column of Table 3.

C Worked Out Example of Risk Neutral Bidding

Two risk-neutral bidders compete for a project that requires two types of inputs to complete:

concrete and traffic cones. The DOT estimates that 10 tons of concrete and 20 traffic cones will be

necessary to complete the project. However, the bidders (both) anticipate that the actual quantities

that will be used – random variables that we will denote qac and qar for concrete and traffic cones,

6That is, in the baseline, the DOT posts quantity estimates qec = 10 and qer = 20, while bidders predict
that E[qac ] = 12 and E[qar ] = 18 with σ2

c = 2 and σ2
r = 1. In the No Quantity Risk counterfactual, the DOT

discerns that qec = qac = 12 and qer = qar = 18, so that σ2
c = σ2

r = 0.
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respectively – are distributed with means E[qac ] = 12 and E[qar ] = 10. We will assume that the

actual quantities are exogenous to the bidding process, and do not depend on who wins the auction

in any way.

The bidders differ in their private costs for the materials (including overhead, etc.): each bidder

i incurs a privately known flat unit cost ci,c for each unit of concrete and ci,r for each traffic cone

used. Thus, at the time of bidding, each bidder i expects to incur a total cost

θi ≡ E [qac ci,c + qar ci,r] = 12ci,c + 10ci,r,

if she were to win the auction. Each bidder i submits a unit bid for each of the items: bi,c and

bi,r. The winner of the auction is then chosen on the basis of her score: the sum of her unit bids

multiplied the DOT’s quantity estimates:

si = 10bi,c + 20bi,r.

Once a winner is selected, she will implement the project and earn net profits of her unit bids, less

the unit costs of each item, multiplied by the realized quantities of each item that are ultimately

used. At the time of bidding, these quantities are unrealized samples of random variables. However,

as the bidders are risk-neutral, they consider the expected value of profits to make their bidding

decisions:

E[π(bi,c, bi,r)|ci,c, ci,r] =E [(qac bi,c + qar bi,r)− (qac ci,c + qar ci,r)]︸ ︷︷ ︸
Expected profits conditional on winning

× Prob(si < sj)︸ ︷︷ ︸
Probability of winning

= ((12bi,c + 10bi,r)− θi)× Prob ((10bi,c + 20bi,r) < (10bj,c + 20bj,r)) .

The key intuition for bid skewing is as follows. Suppose that the bidders’ expectations of the actual

quantities to be used are accurate. Then for any score s that bidder i deems competitive, she can

construct unit bids that maximize her ex-post profits if she wins the auction. For example, suppose

that bidder i has unit costs ci,c = $70 and ci,r = $3, and she has decided to submit a score of

$1000. She could bid her costs with a $5 markup on concrete and a $9.50 markup on traffic cones:

bi,c = $75 and bi,r = $12.50, yielding a net profit of $155. However, if instead, she bids bi,c = $99.98

and bi,r = $0.01, bidder i could submit the same score, but earn a profit of nearly $330 if she wins.

This logic suggests that the DOT’s inaccurate estimates of item quantities enable bidders to

extract surplus profits without ceding a competitive edge. If the DOT were able to predict the actual

quantities correctly, it would eliminate the possibility of bid skewing. In order for bidder i to submit

a score of $1000 in this case, she would need to choose unit bids such that 12bi,c+20bi,r = $1000—

the exact revenue that she would earn upon winning the auction. She could still bid bi,r = $0.01,

for example, but then she would need to bid bi,c = $83.33, resulting in a revenue of $1000 and a

profit of $130 if she wins the auction. A quick inspection shows that no choice of bi,c and bi,r could

improve her expected revenue at the same score.
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It would follow that when bidders have more accurate assessments of what the actual item quan-

tities will be—as is generally considered to be the case—bids with apparent skewing are materially

more costly to the DOT. If the bidders were to share their expectations truthfully with the DOT,

it appears that a lower total cost might be incurred without affecting the level of competition.

However, this intuition does not take into account the equilibrium effect that a change in DOT

quantity estimates would have on the competitive choice of score. It is not true that if a score of

$1000 is optimal for bidder i under inaccurate DOT quantity estimates, then it will remain optimal

under accurate DOT estimates as well. As we demonstrate below, when equilibrium score selection

is taken into consideration, the apparent possibility of extracting higher revenues by skewing unit

bids is shut down entirely.

To illustrate this point, we derive the equilibrium bidding strategy for each bidder in our

example. In order to close the model, we need to make an assumption about the bidders’ beliefs

over their opponents’ costs. Bidder i’s expected total cost for the project θi is fixed at the time of

bidding, and does not depend on her unit bids. For simplicity, we will assume that these expected

total costs are distributed according to some commonly known distribution: θ ∼ F [θ, θ].

By application of Asker and Cantillon (2010), there is a unique (up to payoff equivalence)

monotonic equilibrium in which each bidder of type θ submits a unique equilibrium score s(θ),

using unit bids that maximize her expected profits conditional on winning, and add up to s(θ).

That is, in equilibrium, each bidder i submits a vector of bids {bc(θi), br(θi)} such that:

{bc(θi), br(θi)} = arg max
{bc,br}

{
12bc + 40br − θi

}
s.t. 10bc + 50br = s(θi).

Solving this, we quickly see that at the optimum, br(θi) = 0 and bc(θi) = s(θi)/10 (to see this, note

that if br = 0, then the bidder earns a revenue of 12
10 · s(θi) whereas if bc = 0, then the bidder earns

a revenue of 40
50 · s(θi).)

The equilibrium can therefore be characterized by the optimality of s(θ) with respect to the

expected profits of a bidder with expected total cost θ:

E[π(s(θi))|θi] =
(
12

10
· s(θi)− θi

)
· Prob (s(θi) < s(θj)) (2)

=

(
12

10
· s(θi)− θi

)
· (1− F (θi)) , (3)

where the second equality follows from the strict monotonicity of the equilibrium.7

As in a standard first price auction, the optimality of the score mapping is characterized by the

first order condition of expected profits with respect to s(θ):

∂E[π(s̃, θ)]
∂s̃

|s̃=s(θ) = 0.

7More concretely, a monotonic equilibrium requires that for any θ′ > θ, s(θ′) > s(θ). Therefore, the
probability that s(θi) is lower than s(θj) is equal to the probability that θi is lower than θj .
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Solving the resulting differential equation, we obtain:

s(θ) =
10

12

θ + ∫ θ
θ

[
1− F (θ̃)

]
dθ̃

1− F (θ)

 .

Thus, each bidder i will bid bc(θi) = s(θi)
10 and br(θi) = 0. If bidder i wins the auction, she

expects to earn a markup of:

E[π(θi)] = 12 · s(θi)
10

− θi (4)

=

∫ θ
θi

[
1− F (θ̃)

]
dθ̃

1− F (θi)
. (5)

More generally, no matter what the quantities projected by the DOT are—entirely correct or wildly

inaccurate—the winner of the auction and the markup that she will earn in equilibrium will be the

same.

In particular, writing qec and qer for the DOT’s quantity projections (so that a bidder’s score is

given by s = bcq
e
c + brq

e
r) and qbc and qbr for the bidders’ expectations for the actual quantities, the

equilibrium score function can be written:

s(θ) = min
{qec
qbc
,
qer
qbr

}
·

θ + ∫ θ
θ

[
1− F (θ̃)

]
dθ̃

1− F (θ)

 . (6)

Suppose that qer
qbr

≤ qec
qbc
. Then bidder i will bid b∗r(θi) =

s(θi)
qer

and b∗c(θi) = 0. Consequently, if bidder

i wins, she will be paid qbr · b∗r(θi) =

[
θi +

∫ θ
θi
[1−F (θ̃)]dθ̃
1−F (θi)

]
as in our example.

The probability of winning is determined by the probability of having the lowest cost type,

in equilibrium, and so this too is unaffected by the DOT’s quantity estimates. That is, the level

of competition and the degree of markups extracted by the bidders is determined entirely by the

density of the distribution of expected total costs among the competitors. The more likely it is

that bidders have similar costs, the lower the markups that the bidders can extract. However,

regardless of whether the DOT posts accurate quantity estimates—in which case, bidders cannot

benefit from skewing their unit bids at any score—or not, the expected cost of the project to the

DOT will be the same in equilibrium. Therefore, a mathematically unbalanced bid, while indicative

of a discrepancy in the quantity estimates made by the bidders and the DOT, is not indicative of

a material loss to the government.
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D Discussion of Policy Inefficacy If Bidders are Risk

Neutral

In the body of our paper, we present three counterfactual policy proposals: (1) reducing the latent

uncertainty about item quantities; (2) switching to a lump sum auction; (3) subsidizing entry

costs in order to incentivize additional entry. We show that when bidders are risk averse (and in

particular, under the estimated level of risk aversion), these policies each have a significant impact

on DOT spending in equilibrium. In this section, we argue formally that risk aversion is key to

these results. In particular, if bidders are instead risk neutral, then the effect of all of these policies

is unambiguously null in equilibrium.

The key intuition to these results is as follows. The equilibrium construction in Appendix C

would be almost identical with T items, rather than 2. For risk neutral bidders, the choice of

bid vector that maximizes the “inner” optimization problem conditional on a score is independent

of the bidder’s type: at the optimum, each bidder bids her entire score (normalized by the DOT

engineer’s quantity projection) on the item that will over-run the most in expectation, and zero on

every other item.

Thus, bidding is effectively one-dimensional, and all of the properties of standard single-item

first price auctions with risk neutral bidders apply. In particular, not only would the policies to

reduce uncertainty or switch to a lump sum auction be ineffective (which follows directly from the

model as “risk” does not enter into bidder preferences), but so would a policy to subsidize bidders.

This result is a consequence of revenue equivalence: the decrease in expected costs from the entry of

an additional bidder is equal to the expected profit that this bidder would earn upon entering.8 As

such, the equilibrium number of entrants to a given auction is necessarily efficient: incentivizing an

additional bidder would cost the full additional surplus that this bidder would bring. By contrast,

revenue equivalence does not apply with risk averse bidders, and the additional bidder’s expected

utility from entering may be lower than the decrease in expected costs if she enters.

E Views of Bid Skewing by Contractors and MassDOT

Managers

Bid Skewing Among Contractors

The practice of unbalanced bidding—or bid skewing—in scaling auctions appears, in the words

of one review, “to be ubiquitous” (Skitmore and Cattell (2013)). References to bid skewing in

operations research and construction management journals date as far back as 1935 and as recently

as 2010. A key component of skewing is the bidders’ ability to predict quantity over/under-runs and

optimize accordingly. Stark (1974), for instance, characterizes contemporary accounts of bidding:

8See Klemperer (1999) for a fuller but still intuitive discussion of this.
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Knowledgeable contractors independently assess quantities searching for items apt to

seriously under-run. By setting modest unit bids for these items they can considerably

enhance the competitiveness of their total bid.

Uncertainty regarding the quantities that will ultimately be used presents a challenge to optimal

bid-skewing, however. In an overview of “modern” highway construction planning, Tait (1971)

writes:

...there is a risk in manipulating rates independently of true cost, for the quantities

schedule in the bill of quantities are only estimates and significant differences may be

found in the actual quantities measured in the works and on which payment would be

based.

In order to manage the complexities of bid selection, contractors often employ experts and

software geared for statistical prediction and optimization. Discussing the use of his algorithm for

optimal bidding in consulting for a large construction firm, Stark (1974) notes a manager’s pre-

diction that such software would soon become widespread—reducing asymmetries between bidders

and increasing allocative efficiency in the industry.

...since the model was public and others might find it useful as well, it had the longer

term promise of eroding some uncertainties and irrelevancies in the tendering process.

Their elimination...increased the likelihood that fewer contracts would be awarded by

chance and that his firm would be a beneficiary.

Since then, an assortment of decision support tools for estimating item quantities and optimizing

bids has become widely available. A search on Capterra, a web platform that facilitates research

for business software buyers, yields 181 distinct results. In a survey on construction management

software trends, Capterra estimates that contractors spend an average $2,700 annually on software.

The top 3 platforms command a market share of 36% and surveyed firms report having used their

current software for about 2 years—suggesting a competitive environment. Asked what was most

improved by the software, a leading 21% of respondents said, “estimating accuracy”, while 14% (in

third place) said “bidding”.

MassDOT Challenges to Bid Skewing

Concerns that sophisticated bidding strategies may allow contractors to extract excessively large

payments have led to a number of lawsuits about MassDOT’s right to reject suspicious bids. The

Federal Highway Administration (FHWA) has explicit policies that allow officials to reject bids

that are deemed manipulative. However, the legal burden of proof for a manipulative bid is quite

high. In order for a bid to be legally rejected, it must be proven to be materially unbalanced.9

9See Federal Acquisition Regulations, Sec. 14.201-6(e)(2) for sealed bids in general and Sec. 36.205(d)
for construction specifically (Cohen Seglias Pallas Greenhall and Furman PC (2018)).
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A bid is materially unbalanced if there is a reasonable doubt that award to the bidder ...

will result in the lowest ultimate cost to the Government. Consequently, a materially

unbalanced bid may not be accepted.10

However, as the definition for material unbalancedness is very broad, FHWA statute requires that a

bid be mathematically unbalanced as a precondition. A mathematically unbalanced bid is defined as

one, “structured on the basis of nominal prices for some work and inflated prices for other work.”11

In other words, it is a bid that appears to be strategically skewed. In order to discourage bid

skewing, many regional DOTs use concrete criteria to define mathematically unbalanced bids. In

Massachusetts, a bid is considered mathematically unbalanced if it contains any line-item for which

the unit bid is (1) over (under) the office cost estimate and (2) over (under) the average unit bid

of bidders ranked 2-5 by more than 25%.

In principle, a mathematically unbalanced bid elicits a flag for MassDOT officials to examine

the possibility of material unbalancedness. However, in practice, such bids are ubiquitous, and sub-

stantial challenges by MassDOT are very rare. In our data, only about 20% of projects do not have

a single item breaking MassDOT’s overbidding rule, and only about 10% of projects do not have

a single item breaking the underbidding rule. Indeed, most projects have a substantial portion of

unit bids that should trigger a mathematical unbalancedness flag. However, only 2.5% of projects

have seen bidders rejected across all justifications, a handful of which were due to unbalanced bids.12

The Difficulty of Determining ‘Materially Unbalanced’ Bids

A primary reason that so few mathematically unbalanced bids are penalized is that material un-

balancedness is very hard to prove. In a precedent-setting 1984 case, the Boston Water and Sewer

Commission was sued by the second-lowest bidder for awarding a contract to R.J. Longo Construc-

tion Co., Inc., a contractor who had the lowest total bid along with a penny bid. The Massachusetts

Superior Court ruled that the Commission acted correctly, since the Commission saw no evidence

that the penny bid would generate losses for the state. More specifically, no convincing evidence

was presented that if the penny bid did generate losses, the losses would exceed the premium on

construction that the second-lowest bidder wanted to charge (Mass Superior Court, 1984).13 In

10Matter of: Crown Laundry and Dry Cleaners, Comp. Gen. B-208795.2, April 22, 1983.
11Matter of: Howell Construction, Comp. Gen. B-225766 (1987)
12MassDOT does not reject individual bidders, but rather withdraws the project from auction and possibly

resubmits it for auction after a revision of the project spec.
13In response to this case, MassDOT inserted the following clause into Subsection 4.06 of the MassDOT

Standard Specifications for Highways and Bridges: “No adjustment will be made for any item of work
identified as having an unrealistic unit price as described in Subsection 4.04.” This clause, inserted in the
Supplemental Specifications dated December 11, 2002, made it difficult for contractors to renegotiate the
unit price of penny bid items during the course of construction. An internal MassDOT memo from the time
shows that Construction Industries of Massachusetts (CIM) requested that this clause be removed. One
MassDOT engineer disagreed, writing that “if it is determined that MHD should modify Subsection 4.06 as
requested by CIM it should be noted that the Department may not necessarily be awarding the contract to
the lowest responsible bidder as required.” The clause was removed from Subsection 4.06 in the June 15,
2012 Supplemental Specifications.

16



January 2017, MassDOT attempted to require a minimum bid for every unit price item in a var-

ious locations contract due to bid skewing concerns. SPS New England, Inc. protested, arguing

that such rules preclude the project from being awarded to the lowest responsible bidder. The

Massachusetts Assistant Attorney General ruled in favor of the contractor on August 1, 2017.

In fact, as we show in Appendix B, there is a theoretical basis to question the relationship

between mathematical and material unbalancedness. As we demonstrate, bid skewing plays dual

roles in bidders’ strategic behavior. On the one hand, bidders extract higher ex-post profits by

placing higher bids on items that they predict will over-run in quantity. On the other hand,

bidders reduce ex-ante risk by placing lower bids on items, regarding which they are particularly

uncertain. Moreover, when bidders are similarly informed regarding ex-post quantities, the profits

from predicting over-runs are largely competed away in equilibrium, but the reduction in ex-ante

risk is passed on to MassDOT in the form of cost-savings.

F Solving Portfolio Problems

We present a fast, deterministic algorithm to solve the constrained quadratic programs found in

the bidders’ portfolio problems. Given the independence of items within a project, each problem

can be represented in the form:

max
{xi}i

∑
i

aixi − bix
2
i subject to

{ ∑
i qixi = s

xi ≥ 0 for each i

The primal formulation of this problem is

max
{xi}i

min
v

{∑
i

fi(x) + v
(
q′x− s

)}

where fi(x) = aix− bix
2 + pi(x)

and pi(x) =

{
∞ if xi < 0

0 otherwise

where v is the Lagrange multiplier on the linear constraint. By well known results, we can instead

solve the dual problem:

min
v

max
{xi}i

{∑
i

fi(x) + v
(
q′x− s

)}
︸ ︷︷ ︸

g(x)
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The First Order Conditions of g(x) are given by ∇ig(x)
∂xi

= ai−2bxi+vqi = 0 and so, at the optimum:

x∗i = max

{
ai + vqi

2bi
, 0

}
.

Substituting x∗ into the dual objective, we obtain:

min
v

{∑
i

hi(x
∗
i )− v (s)

}
(7)

where: hi(x
∗
i ) =

 (ai+vqi)
2

2bi
− bi

(
ai+vqi
2bi

)2
if ai+vqi

2bi
> 0

0 otherwise.

Simplifying this further,

hi(x
∗
i ) =

{
1
4bi

(ai + vqi)
2 if ai+vqi

2bi
> 0

0 otherwise.

Thus, the solution to the original problem is the v∗k that minimizes Equation (7) with k non-zero

components with the form x∗i =
ai+v∗kqi

2bi
. Noting that ai+vqi

2bi
> 0 ⇐⇒ v > −ai

qi
, we propose the

following algorithm for solving the problem:

1. Rank {i} in order of −ai
qi

(lowest to highest). Note that under this sorting, for any v, if

v ≤ −aj
qj

for some j, then v ≤ −ak
qk

for all k > j. Consequently if v ≤ −aj
qj

for some j, then

hk(x
∗
k(v)) = 0 for all k > j as well, so that we do not need to consider the contributions of

elements k > j in the objective.

2. For each k, let ṽk to be the value of v that minimizes Equation (7) on the interval (−ak
qk

,
−ak+1

qk+1
].

Iteratively search over indices k, computing ṽk, and compare them to find the global minimizer

among them.

Note that for any k in Step 2., there is a closed form solution to ṽk:

ṽk = arg min
v∈

(
−ak
qk

,
−ak+1
qk+1

]

∑

i≤k

1

4bi
(ai + ṽkqi)

2

− ṽks

 .

This is a sum of quadratics (e.g. a quadratic), and so we find the optimum by taking the FOC:

ṽ∗k = min

{
2s−

∑
i≤k

aiqi
bi∑

i≤k

1
bi
q2i

,
−ak+1

qk+1

}
. (8)

Thus, we can compute ṽ∗k for each sequential index k with two operations by considering just the

kth contribution to Equation (8). Finally, we compare each ṽ∗k across indices k to find the global

minimizer.
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Edge Cases This algorithm above will work so long as ai+vqi
2bi

is well defined – that is so long

as bi > 0. When there is (at least one) element i such that bi = 0 (and so it is linear), the optimal

solution will stop propagating vk’s as soon as it hits the first linear element in the −ai/qi rank

order. At that point (say the linear element is the kth one): vk = −ak/qk and xk =
s−

∑
i≤k

qix
∗
i

qk
.

Adding Item-Level Constraints Suppose that we add item-specific constraints, so that our

problem is:

max
{xi}i

∑
i

aixi − bix
2
i ; subject to

{ ∑
i qixi = s

xi ≥ ri for each i

where ri > 0 is some (known) number for each component i.

To use our algorithm above, we simply transform x into a new variable: y = x− r

max
{yi}i

∑
i

ai(yi + ri)− bi(yi + ri)
2; subject to

{ ∑
i qi(yi + ri) = s

yi ≥ 0 for each i

Simplifying, we see that this fits right into our previous framework:

max
{yi}i

∑
i

ãiyi − b̃iy
2
i + C̃i; subject to

{ ∑
i qiyi = s̃

yi ≥ 0 for each i
where:


ãi = ai − 2biri

b̃i = bi

C̃i = airi − bir
2
i

s̃ = s−
∑

i qiri

Note that C̃ is a constant and so does not affect optimization.

G Model Extensions

G.1 Constant Relative Risk Aversion

The model of risk aversion in our paper assumes that bidders are endowed with a CARA utility

function. While CARA is commonly used as a local approximation of general risk aversion—and

does well at matching data in our simulations—it may mischaracterize preferences when the stakes

are an order of magnitude or more higher, as in our lump sum counterfactual. In this section, we

discuss how our model may be extended to a model of CRRA utility.

Primitives Suppose that bidders are instead risk averse with a standard CRRA utility function

over their earnings from the project and a constant coefficient of relative risk aversion γ:

u(π) =
π1−γ

1− γ
. (9)

19



As in our main model, we will assume that bidders are differentiated along their cost efficiency type

α. For simplicity, in this extension, we will assume that all bidders within the same auction share

a common CRRA coefficient γ.

Given the functional form of the CRRA model, a model of quantity uncertainty with Gaussian

noise would be intractable. However, as is common in the asset pricing literature, we can make use

of several identities and approximation techniques. The first such tool is the following fact, which

shows that the expected utility of a lognormal random variable has a closed form. Suppose that

log(x) ∼ Normal(µ, σ2). Then:

E[u(x)] =
exp

[
(1− γ)µ+ 1

2(1− γ)2σ2
]

1− γ
. (10)

In order to use this identity, we employ several assumptions. First, we assume that the ratio of

ex-post to (DOT-predicted) ex-ante quantities is distributed lognormally:

qat
qet

∼ LogNormal
(
p̄t, σ

2
t

)
.

Modeling Expected Utility Considering a bidder with efficiency type α, we write the bidder’s

ex-post profit function:

π(b) =
∑
t

qat · (bt − αct) =
∑
t

qet ·
(
qat
qet

)
· (bt − αct) . (11)

Normalizing by (s − α
∑

k q
e
kck)—which we denote by R(s)—and reparametrizing, we can further

write this:

π(b) =

(
s− α

∑
k

qekck

)
·

[∑
t

(
qat
qet

)
· q

e
t · (bt − αct)

s− α
∑

k q
e
kck

]
(12)

=R(s) ·

[∑
t

(
qat
qet

)
· q

e
t · (bt − αct)

R(s)

]
(13)

=R(s) ·

[∑
t

wt exp(pt)

]
, (14)

where we use wt ≡ qet ·(bt−αct)
R and pt ≡ log

(
qat
qet

)
in the latter equality.

While Equation (14) looks like a portfolio, it is not a lognormal random variable. However, taking

logs and a second order Taylor approximation thereof, we achieve:

log(π(b)) ≈ log(R(s)) + log

(∑
t

wt

)
+
∑
t

wtpt∑
k wk

+
1

2

∑
t

wtp
2
t∑

k wk
− 1

2

∑
t

∑
r

wtwtptpr

(
∑

wk)
2 .
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To account for higher order terms, we apply a final technique from asset pricing. Using a continuous

time approximation, we arrive at:

log(π(b)) ≈ Normal
(
log(R(s)) + log (

∑
twt) +

∑
t

wtp̄t∑
k wk

+ 1
2

∑
t

wtσ2
t∑

k wk
− 1

2

∑
t

w2
t σ

2
t

(
∑

k wk)2
,w′Σw

)
,

where Σ is a diagonal matrix of variances, σ2 and wt = qet · (bt − αct). Given this lognormal

approximation of π(b), we can now compute expected utility. Plugging in the relevant terms and

simplifying, we find:

log(E[u(π(b))]) ≈ log

(
[R(s)]1−γ

1− γ

)
+

1− γ

[R(s)]2
·

[∑
t

R(s) · qet · (bt − αct) ·
(
p̄t +

1

2
σ2
t

)
− γ

2

∑
t

(qet )
2σ2

t · (bt − αct)
2

]
. (15)

Computing Optimal Bids As in the CARA case, the expected utility of profits upon winning

in Equation (15) yields a portfolio problem. For a given score s, the bidder will choose a vector of

bids bt(s) that maximize Equation (15) subject to the condition that they are all non-negative and

sum to s. Given the non-negativity constraints, there is again no closed form solution for optimal

unit bids. However, at a given solution, every non-zero optimal unit bid has the following form:

b∗t = α ·

ct −
∑

k:bk>0

qekck

qetσ
2
t

∑
k:bk>0

1
σ2
k

+
R(s)

γ
·

 p̄t
σ2
t
+ 1

2

qet
−

∑
k:bk>0

p̄k
σ2
k
+ 1

2

qetσ
2
t

∑
k:bk>0

1
σ2
k

+

 s

qetσ
2
t

∑
k:bk>0

1
σ2
k

 . (16)

Estimation Our estimation procedure mirrors that of the CARA model, making adjustments

as necessary for the alternative set of assumptions. First, we estimate a first stage model of log-

quantity-ratio predictions and variances. Denoting an auction by n, we assume that the posterior

distribution of each log(qat,n/q
e
t,n) is given by a statistical model that conditions on item charac-

teristics (e.g. the item’s type classification), observable project characteristics (e.g. the project’s

location, project manager, designer, etc.), and the history of DOT projects. In particular, we model

the realization of the actual quantity of item t in auction n as:

log(qat,n/q
e
t,n) = pbt,n + ηt,n, where ηt,n ∼ N (0, σ2

t,n) (17)

such that pbt,n = βpXt,n and σ̂t,n = exp(βσXt,n). (18)

As in the CARA case, we estimate this model with Hamiltonian Monte Carlo and use the posterior

means p̂bt,n and σ̂t,n directly in the second stage of our procedure. Plugging the first stage estimates

into Equation (16), we obtain a prediction of each bidder i’s unit bid for each item t given her

observed score si,n in auction n. We therefore adapt Assumption 1 (Section 6) once more and use

the analogous moment conditions to the CARA case to estimate a project-wide CRRA parameter
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γn for every auction and an efficiency coefficient for every bidder-auction pair αi,n. Given the

structure of CRRA, bidder wealth is a relevant part of the utility function, that influences the

optimal portfolio choice. While this again makes use of several approximations, we account for

wealth by augmenting R(s) ≡ W + s − α
∑

k q
e
kck throughout our model. We allow wealth W to

vary from project to project, and estimate it by projecting onto the matrix of average project-

bidder characteristics Xn. We present our estimates in Table 5 below. The resulting estimates of

α are higher than in the heterogeneous γ CARA case in the main model of our paper. However,

the CRRA coefficients are mostly between 0.6 and 0.8, which is within the region found in related

studies. See pg 133 of Campo, Guerre, Perrigne, and Vuong (2011) for a discussion.

Parameter Mean SD 25% 50% 75%

α 1.215 0.163 1.088 1.185 1.353
γ 0.704 0.101 0.638 0.692 0.756
W 243.228 135.568 140.988 235.571 333.681

Table 5: CRRA Estimate Summary Statistics Across All Projects

Computing Equilibrium Outcomes We construct equilibria analogously to the CARA case.

For simplicity, we consider only equilibrium bidding conditional on the observed number of bidders

in each auction, and do not account for endogenous entry decisions.

To see how this is done, note that the analog of Equation (18) (Appendix A) is given by:

EU(σ(αi), αi) = exp [(1− γ) · V (σ(αi), αi)] · (1− F (σ−1(σ(αi)))

+W 1−γ · F (σ−1(σ(αi)), (19)

where

V (σ(αi), αi) = log (R(σ(αi), αi))+

1

R(σ(αi), αi)
·

[∑
t

qet · (bt(σ(αi))− αict) ·
(
p̄t +

1

2
σ2
t

)]

− γ/2

R(σ(αi), αi)2
·

[∑
t

(qet )
2σ2

t · (bt(σ(αi))− αict)
2

]
, (20)

and bt(σ(αi)) is chosen according to the portfolio problem, with R = W + σ(αi)−αi
∑

r q
e
rcr. The

equilibrium function σ(α) is thus given by the solution to the differential equation:

σ′(α) =
f(α)

1− F (α)

1

(1− γ)∂V (σ(α),α)
∂s

[
1− W 1−γ

exp [(1− γ) · V (σ(α), α)]

]
, (21)
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CF Type ∆ Cost Units Mean SD 25% 50% 75%

Lump Sum % -45.5 39.2 -50.2 -34 -22.2
Lump Sum $ -845,095 741,921 -1,149,156 -661,338 -341,346

No Risk (Correct q) % -19.8 18.1 -26.2 -14.4 -7.6
No Risk (Correct q) $ -307,528 248,509 -421,562 -242,390 -147,097

No Risk (Estimated q) % −41.7† 61.2† -45.7 -24.4 -14.9
No Risk (Estimated q) $ −465, 041† 315, 305† -595,512 -368,224 -234,416

Note: † refers to samples truncated by 5% to exclude extreme values

Table 6: Summary of Counterfactual Changes in Expected DOT Spending

subject to the boundary condition that the highest α type is indifferent between participating in

the auction or not: V (σ(α), α) = log(W ). We present summary results for the lump sum and

no-risk counterfactuals in Table 6.

G.2 Asymmetric Bidder Types

To construct counterfactuals in Section 8, we assume that bidder types (α, γ) are fully characterized

by a one-dimensional meta-type τ , which distributed IID, according to a common auction-specific

distribution. Under these assumptions, we construct the unique symmetric equilibrium in monotone

strategies. In this section, we discuss an extension to a model in which bidder types are characterized

by different known CARA coefficients, and separate, uncorrelated IID draws of efficiency types α.

In this case, a symmetric equilibrium may not exist and we must consider asymmetric equilibria.

Modeling and Estimation To simplify our analysis for demonstrative purposes, we split

bidders into two groups based on the number of auctions that they participated in throughout our

data. Of the 25 unique bidder ids in our sample, we label 14 as “frequent” bidders because they

participated in 50 or more auctions; we label the remaining 11 “infrequent”.14 Note that while this

splits the sample of bidders roughly in half, the distributions of participation are quite different

in the two groups: the average “frequent” firm participated in 123 auctions, whereas the average

“infrequent” firm participated in 20.

In order to generate counterfactuals with an internally consistent set of type estimates, we

re-estimate our second stage model under the constraint that bidder risk aversion types γi,n are

homogeneous within their frequency groups. To do this, we modify the second part of Equation

14Recall that the 25 unique bidder ids refer to 24 “common” firms, who participated in at least 30 auctions,
and 92 “rare” firms who are grouped together because they did not participate in enough auctions to identify
an individual firm fixed-effect in the bidder type regressions. Here, we split the “common” firms further in
order to divide our sample into highly active firms, and the rest.

23



(28) in Appendix C.3.2 as follows:

1

γi,n
= β

g(i)
0,γ + βX,γXn + νγ,i,n, (22)

where g(i) ∈ {f, r} denotes whether the bidder is a frequent bidder and Xn is the vector of average

bidder-auction characteristics in auction n. Leaving the rest of the model unchanged, we estimate

the modified second stage following the GMM procedure specified in our paper.

Parameter Bidder Type Mean SD 25% 50% 75%

α Frequent 0.946 0.231 0.846 0.978 1.092
α Infrequent 0.944 0.235 0.777 0.976 1.127

γ Frequent 0.053 0.043 0.024 0.043 0.066
γ Infrequent 0.074 0.092 0.025 0.051 0.086

Table 7: 2-Type Estimate Summary Statistics Across All Projects

Our results, summarized in Table 7, show that frequent bidders are not generally more cost efficient

than infrequent bidders. While the median cost multiplier is about the same in both groups, the

25th percentile of infrequent firms is about 8% more efficient than the corresponding percentile of

frequent firms, but the 75th percentile of infrequent firms is 3% less efficient than frequent firms.

On the other hand, we find that frequent bidders exhibit slightly less risk aversion than less frequent

bidders. Neither of these results are surprising: frequent bidders likely specialize in work for the

DOT. As such, they participate in auctions where they do not have a particularly strong efficiency

advantage. But their risks are also spread across more auctions, and so the weight of uncertainty

in any particular project is lower.

Computing Equilibrium Outcomes To compute counterfactuals, we assume that bidder

efficiency types α are drawn IID from an auction-wide distribution (characterized similarly to

the distribution of τ in our paper) and that the estimated group-specific CARA coefficients are

publicly known. Under these assumptions, by Reny and Zamir (2004), there exists an asymmetric

equilibrium in monotonic strategies such that each bidder type bids according to the monotone

function σg : [α, α] → R.15 For simplicity, we consider only equilibrium bidding conditional on the

observed numbers of bidders in each auction and do not account for endogenous entry decisions.

15Uniqueness may not be guaranteed and so our construction procedure may be thought of as imposing
an equilibrium selection criterion.
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Given strategies σg, the probability that i will win the auction under bid s is given by:∏
j ̸=i

[1−Hj (s)] =
∏
j ̸=i

[Pr(s < σj(αj))] (23)

=
∏
j ̸=i

[
1− F (σ−1

j (s))
]

(24)

=
∏
j ̸=i

[1− F (φj(s))] (25)

where the final equality relabels the inverse bid function for convenience. Applying logic analogous

to that in Appendix A of our paper, we derive the following set of differential equations:

∂φf (s̃)

∂s
=

1− F (φf (s̃))

f(φf (s̃))
·

[
1

(Nf +Nr − 1)

(
Nr ·

∂
∂sV (φr(s̃))

V (φr(s̃))
− (Nr − 1) ·

∂
∂sV (φf (s̃))

V (φf (s̃))

)]

∂φr(s̃)

∂s
=

1− F (φr(s̃))

f(φr(s̃))
·

[
1

(Nf +Nr − 1)

(
Nf ·

∂
∂sV (φr(s̃))

V (φr(s̃))
− (Nf − 1) ·

∂
∂sV (φf (s̃))

V (φf (s̃))

)]

where V (φg(s̃)) = 1− exp(−γg · CE(s̃, γg, φg(s̃))) (26)

and CE(s̃, γg, φg(s̃)) =
T∑
t=1

qbt (b
∗
t (s̃)− φg(s̃)ct)−

γgσ
2
t

2
(b∗t (s̃)− φg(s̃)ct)

2 . (27)

Here, the optimal bids b∗t (s̃) are derived from the solution to the bidder’s portfolio problem in

Equation 5 (Section 5) as in the main paper. This set of differential equations characterizes an

equilibrium subject to several boundary conditions. The particular boundary conditions that apply

to a given auction depend on the auction format, the number of bidders of each frequency type

that participate, and the magnitude of the difference between the bidders’ CARA coefficients.

There are three possible cases. The “standard” case16 requires that the highest and lowest α

types of both frequency groups submit the same score, and that the highest α type of the more

risk averse group (who has no chance of winning) earn a certainty equivalent of zero. This applies

when there is only one bidder of the less risk averse group, or if project portfolio risk is irrelevant as

in the no-risk counterfactual. However, as noted in Hubbard and Kirkegaard (2019), the standard

conditions do not generally induce an equilibrium in an asymmetric auction with more than 2

bidders when the bidders have different supports for their value distributions. In our case, while

both frequency groups have the same support of cost efficiency types α, their different CARA

16See Hubbard and Paarsch (2014) for a comprehensive survey.
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coefficients induce different (overlapping) supports on the certainty equivalents of their portfolios

at each score.

As such, when there are two or more bidders of each frequency group, different boundary

conditions at either end apply. Suppose, for example that γf < γr, and let sf be the score that

generates a zero certainty equivalent for the least competitive (highest α) frequent bidder. No

bidder submitting a higher score has a chance of winning, and so in equilibrium, any infrequent

bidder submitting sf or higher earns a zero certainty equivalent as well. Thus, there is some cutoff

af such that every infrequent bidder with α > af submits a score that provides her a certainty

equivalent of zero. On the left hand boundary, there are two possibilities. If the certainty equivalent

distributions of the frequent and infrequent groups are sufficiently similar, then the lowest α types

of each group will submit the same score as in the standard case. However, if the distributions

are too far apart, the bidding functions might be bifurcated as in Hubbard and Kirkegaard (2019).

That is, there may be a set of α types from the frequent group that compete against each other at

scores too low for infrequent bidders to be willing to participate. In this case, there are also two

different starting scores sf < sr such that φf (sf ) = α and φf (sr) = α.

To compute equilibria for each auction, we solve a boundary value problem with a shooting

algorithm based on Hubbard and Paarsch (2014). To account for bifurcation, we allow for two

regions in the ODE solution: a homogeneous region in which only one group of bidders compete

against each other, and a heterogeneous region that follows the equations described in this section.

We find the beginning of the heterogeneous region by iteratively checking for the first score at which

both groups of bidders have a type willing to participate in bidding.17 While shooting methods are

known to be highly sensitive to the step size of their integration method, we found that a modified

shooting method with high-step-size Euler integration worked most consistently for our problem.

To demonstrate how asymmetric equilibria look in comparison to symmetric equilibria with

similar informational assumptions, in Table 8 we present a comparison of the no-risk and lump-

sum counterfactuals under a symmetric 1-type (single, publicly known CARA coefficient) model and

under the asymmetric 2-type (two groups with different CARA coefficients) model described above

for a sample of auctions in our data.18 The sample accounts for roughly half of the projects in our

dataset and is similar in distribution to projects of the Bridge Reconstruction and Rehabilitation

category. Among the projects included, the average γ in the 1-type specification is 0.49 (with

standard deviation 0.083 and median 0.029). By contrast, the average frequent type γ is 0.040 (s.d.,

0.065; median, 0.028) and the average infrequent type γ is 0.048 (s.d., 0.048; median, 0.027).19

In general, we find that the results between the 1-type and 2-type cases are within a few

17This procedure is similar to the check for “active” bidders in Somaini (2020).
18To see a full description of the 1-type case, see the 2022 version of this paper.
19We chose projects to include in the sample on the basis of computational efficiency. This tends to

select for projects with lower overall risk aversion and costs, as these projects exhibit more stable numerical
behavior at the tails. The total sample is 248 projects. However as we were not able to get convergence on
all projects in all auction formats, our comparison includes 237 projects in the no risk counterfactual and
204 projects in the lump sum counterfactual.
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percentage points of each other. For the median auction in this sample, the 2-type model predicts

a risk premium that is 0.4 percentage points higher and a lump sum cost that is 0.2 percentage

points lower than the 1-type model. A similar pattern holds at the average and every quartile

as well. This suggests that the value of lowering risk by using a scaling format or by reducing

uncertainty may be a bit lower if bidders are asymmetric, relative to a symmetric model in which

all bidders in the same auction have the same level of risk aversion.

CF Type Outcome Mean SD 25% 50% 75%

No Risk (Correct q) % DOT Savings 1-Type 17.8 11.9 10.3 16.9 22.5
No Risk (Correct q) % DOT Savings 2-Type 18.2 11.9 10.9 17.3 23.5

No Risk (Correct q) $ DOT Savings 1-Type 217,539 200,062 80,474 161,121 293,246
No Risk (Correct q) $ DOT Savings 2-Type 225,817 213,274 85,708 169,542 298,545

Lump Sum (Correct q) % DOT Savings 1-Type -90.7 245.8 -77.0 -21.6 4.1
Lump Sum (Correct q) % DOT Savings 2-Type -84.0 218.4 -73.6 -21.4 3.2

Lump Sum (Correct q) $ DOT Savings 1-Type -1,696,121 7,843,739 -929,132 -242,667 13,323
Lump Sum (Correct q) $ DOT Savings 2-Type -1,600,511 6,827,165 -926,175 -222,249 8,240

Table 8: Comparisons of 1-type vs 2-type Counterfactuals for a Sample of Auctions
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