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Motivation

“ Economists havemade remarkable progress over the last several decades in developing

empirical techniques that provide compelling evidence of causal effects—the so-

called ‘credibility revolution” in empirical work. . .

But while it is interesting and important to know what the effects of a policy are, we

are often also interested in a normative question as well: Is the policy a good idea or

a bad idea?

. . .What is the welfare impact of the policy?”

—Finkelstein and Hendren (2020)
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Motivation

▶ Measuring welfare requires taking a stance on behavior at unobserved points.

▶ Many papers impose “standard” functional form assumptions.

→ Linear interpolation: Dlinear(p) = A− βp.

▶ Harberger (1964); Hackmann et al. (2015); Amiti et al. (2019); Hahn and Metcalfe (2021).

→ Isoelastic interpolation: Disoelastic(p) = Ap−ε.

▶ Hausman (1981); Hausman et al. (1997); Brynjolfsson et al. (2003); Fajgelbaum et al. (2020).

How robust are welfare estimates to the choice of functional form assumption?
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This Paper

▶ We establish measures of robustness for quantitative welfare conclusions.

– How much variability in the demand curve can there be before the conclusion flips?

▶ We parametrize variability through conditions on gradients and curvature.

– In each case, we obtain a single-dimensional statistic of relative robustness.

▶ To guarantee robustness, we establish welfare bounds.

– These bounds are robust: they give the best-case and worst-case welfare estimates

that are consistent with any demand curve within a class of variability.

– These bounds are also simple: we can compute them in closed form.
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Framework
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Potential Outcomes for Demand: An Experimental Ideal

▶ Suppose we randomly assign prices for a good to two groups:

– Group t = 0 gets price p0.

– Group t = 1 gets price p1.

– We observe individual i buying yit units at her assigned price pt .

▶ Consider the potential outcomes:

yi =

yi1 if t = 1,

yi0 if t = 0.
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Potential Outcomes for Demand: An Experimental Ideal

▶ Suppose we randomly assign prices for a good to two groups.

▶ Consider the potential outcomes:

yi =

yi1 if t = 1,

yi0 if t = 0.

▶ Define aggregate demand:

D(pt) = E[yit ] for t = 0, 1.

▶ With sample estimator:

D̂(pt) =
1
nt

nt∑
i=1

yit for t = 0, 1.
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Potential Outcomes for Demand: An Experimental Ideal

▶ Our goal is to estimate the difference in consumer surplus between the two groups.

D(p)

0
q

p

p1

D̂(p1)

p0

D̂(p0)

A B

▶ With D(p), the difference in CS is equal to:

area A︸ ︷︷ ︸
=(p1−p0)D̂(p1)

+ area B =

∫ p1

p0
D(p) dp.

▶ Main challenge:

D(p) isn’t identified between p0 and p1.
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Common Approach: Linear Interpolation

▶ Our goal is to estimate the difference in consumer surplus between the two groups.

D(p)

0
q

p

p1

D̂(p1)

p0

D̂(p0)

A B

▶ Estimate regression:

yit = θ1 − θ2pt + ϵit .

▶ Integrate under D̂(p) = θ̂1 − θ̂2p (w.r.t. p):

∆̂CSlinear =
1
2
(p1 − p0)

[
D̂(p1) + D̂(p0)

]
.
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Common Approach: Isoelastic Interpolation

▶ Our goal is to estimate the difference in consumer surplus between the two groups.

logD(π)

0
log q

log p︸︷︷︸
=π

log p1︸ ︷︷ ︸
=π1

log D̂(π1)

log p0︸ ︷︷ ︸
=π0

log D̂(π0)

▶ Estimate regression:

log(yit) = θ1 − θ2 log(pt) + ϵit .

▶ Integrate under D̂(log p) = θ̂1p−θ̂2 (w.r.t. p):

∆̂CSisoelastic =
(p1q̂1 − p0q̂0) log (p1/p0)
log (q̂1/q̂0) + log (p1/p0)

,

where q̂t = D̂(log pt).
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How different are these functional forms?

D(p)

0
q

p

p1︸︷︷︸
=p0(1+τ)

q1

p0

q0

▶ Example from Trump tariffs: Amiti et al. (2019).

▶ Setting: 2018 trade war involved tariffs as high

as 30–50%.

▶ Question: What was the DWL due to tariffs?

▶ Approach: Compare monthly prices and

quantities by item in 2017 vs. 2018.

▶ Method: Approximate D(p) with a linear curve;

integrate under the curve.
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DWL estimates based on different functional forms
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Parametrizing variability in demand curves

▶ Two commonly used functional form assumptions are linear and isoelastic demand.

– Linear demand: constant gradient, zero curvature. ; of demand w.r.t. price

– Isoelastic demand: constant gradient, zero curvature. ; of log-demand w.r.t. log-price

Generalization: A(q) is affine in B(p), where A, B are continuous and increasing.

; E.g., A = B = id (linear); A = B = log (isoelastic); A = log, B = id (exponential). . .

; Would welfare conclusions derived under these functional forms continue to hold if:

– A(q) had non-constant gradient in B(p)?

– A(q) had non-zero curvature in B(p)?
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Range of gradients along the demand curve

D(p)

0
q

p

p1

q1

p0

q0

Under the assumption of linear demand, suppose

∆CSlinear−W < 0.

This assumes D′(p) = constant = −βavg for all p.

Introduction Framework Robustness in Gradients Robustness in Curvature Conclusion 14



DR
AF
T

Range of gradients along the demand curve

D(p)

0 q

p

p1

q1

p0

q0

Under the assumption of linear demand, suppose

∆CSlinear−W < 0.

This assumes D′(p) = constant = −βavg for all p.

What is the smallest r s.t.

D′(p) ∈ [−βavg/ (1− r) ,−βavg (1− r)], r ∈ [0, 1],

but the curve D(p) flips the conclusion:

∆CS−W ≥ 0?
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Range of gradients along the demand curve

D(p)

0 A(q)

B(p)

B(p1)

A(q1)

B(p0)

A(q0)

Under the assumption that A(q) is affine in B(p),

suppose

∆CS−W < 0.

This assumes that the gradient of A vs. B is constant.

What is the smallest r s.t. the gradient of A vs. B is in

[−βavg/ (1− r) ,−βavg (1− r)], r ∈ [0, 1],

but the curve D(p) flips the conclusion:

∆CS−W ≥ 0?
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Robustness in Gradients
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Welfare bounds for robustness in gradients

Suppose that the graph of A v.s. B has a gradient bounded between β and β, i.e.,

A′(D(p))D′(p)
B′(p)

∈ [β, β] for p ∈ [p0, p1].

What does this imply about the largest and smallest possible values of∆CS?

Theorem (welfare bounds for gradients).

Under the above assumption, the largest and smallest possible values of the change

in consumer surplus∆CS are attained by 2-piece A-B-linear interpolations.
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Defining 1-piece and 2-piece interpolations

D(p)

0 q

p

p1

q1

p0

q0

(1-piece) linear

interpolation

D(p)

0 q

p

p1

q1

p0

q0

2-piece linear

interpolation
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Defining 1-piece and 2-piece interpolations

D(p)

0 A(q)

B(p)

B(p1)

A(q1)

B(p0)

A(q0)

(1-piece) A-B-linear

interpolation

D(p)

0 A(q)

B(p)

B(p1)

A(q1)

B(p0)

A(q0)

2-piece A-B-linear

interpolation
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Welfare bounds: Deriving a threshold

Theorem (welfare bounds for gradients).

Under the above assumption, the largest and smallest possible values of the change

in consumer surplus∆CS are attained by 2-piece A-B-linear interpolations.

D(p)

0
q

p

p1

q1

p0

q0

β → −∞
β → 0,

D(p)

0
q

p

p1

q1

p0

q0
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Geometric derivation of welfare bounds Back

D(p)

0
q

p

p1

q1

p0

q0 0
A(q)

B(p)

B(p1)

A(q1)

B(p0)

A(q0)
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What if we have more price points?

D(p)

0
q

p

p2

q2

p1

q1

p0

q0 0
A(q)

B(p)

B(p2)
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A(q0)

Introduction Framework Robustness in Gradients Robustness in Curvature Conclusion 23



DR
AF
T

What if we have more price points?

D(p)

0
q

p

p2

q2

p1

q1

p0

q0 0
A(q)

B(p)

B(p2)

A(q2)

B(p1)

A(q1)

B(p0)

A(q0)

Introduction Framework Robustness in Gradients Robustness in Curvature Conclusion 23



DR
AF
T

What if we have more price points?

D(p)

0
q

p

p2

q2

p1

q1

p0

q0 0
A(q)

B(p)

B(p2)

A(q2)

B(p1)

A(q1)

B(p0)

A(q0)

Introduction Framework Robustness in Gradients Robustness in Curvature Conclusion 23



DR
AF
T

What if we have more price points?

D(p)

0
q

p

p2

q2

p1

q1

p0

q0 0
A(q)

B(p)

B(p2)

A(q2)

B(p1)

A(q1)

B(p0)

A(q0)

Introduction Framework Robustness in Gradients Robustness in Curvature Conclusion 23



DR
AF
T

What if we have more price points?

D(p)

0
q

p

p2

q2

p1

q1

p0

q0 0
A(q)

B(p)

B(p2)

A(q2)

B(p1)

A(q1)

B(p0)

A(q0)

Introduction Framework Robustness in Gradients Robustness in Curvature Conclusion 23



DR
AF
T

How does this work in practice?

▶ Suppose we observe price + quantity data for a good in a few markets at t = {0, 1}
▶ For now: suppose there was an exogenous price shock at t = 1

e.g. an import tariff (w/ pass through 1)

e.g. a local subsidy/discount in an experiment or promotion
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How does this work in practice?

▶ We observe different pre/post price points in each market...

▶ But the markets are also different...

; In this example: RCL logit with market FEs
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How does this work in practice?

▶ We don’t have really have enough data for BLP

⇒ What do we do?
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Common Approach: Linear Interpolation

▶ Our goal is to estimate the difference in consumer surplus between the two groups.

D(p)

0
q

p

p1

D̂(p1)

p0

D̂(p0)

A B

▶ Estimate regression:

yit = θ1 − θ2pt + ϵit .

▶ Integrate under D̂(p) = θ̂1 − θ̂2p (w.r.t. p):

∆̂CSlinear =
1
2
(p1 − p0)

[
D̂(p1) + D̂(p0)

]
.
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How does this work in practice?

▶ A common approach: (diff in diff) linear regression:

qmt = αpmt + FEm + νmt (1)

⇒ interpretation: α is the average treatment effect of∆p

⇒ interpretation: α is the average gradient of the demand curve(s)

; we can assume demand is linear/isoelastic/etc., and extrapolate
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How does this work in practice?
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How does this work in practice?

▶ A common approach: (diff in diff) linear regression:

qmt = αpmt + FEm + νmt (2)

⇒ interpretation: α is the average gradient of the demand curve(s)

⇒ we can assume demand is linear/isoelastic/etc., and extrapolate

; Is this a good approximation?
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How does this work in practice?
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How does this work in practice?

▶ A common approach: (diff in diff) linear regression:

qmt = αpmt + FEm + νmt (3)

⇒ interpretation: α is the average gradient of the demand curve(s)

⇒ we can assume demand is linear/isoelastic/etc., and extrapolate

⇒ Is this a good approximation?

; In practice, we can’t know the truth

; But we can construct bounds to see how far off we might be
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How does this work in practice?
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How does this work in practice?

For each market. . .

▶ Take p0, p1, q0 and impute q1 = q0 + α̂∆p

▶ For r ∈ [0, 1], compute bounds on∆CS w/ Theorem 1

Suppose the price shock had a positive welfare externalityW

▶ Policy question: Is the externality benefitW bigger than the cost∆CS?

▶ Robustness question:
What is the minimum gradient range s.t. ∆CS is guaranteed to be belowW?
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How does this work in practice?
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How does this work in practice?

For each market. . .

▶ Take p0, p1, q0 and impute q1 = q0 + α̂∆p

▶ For r ∈ [0, 1], compute bounds on∆CS w/ Theorem 1

Suppose the price shock had a positive welfare externalityW

▶ Policy question: Is the externality benefitW bigger than the cost∆CS?

▶ Robustness question:

What is the minimum gradient range s.t. ∆CS is guaranteed to be belowW?

Note: Only the boundaries on the magnitude of∆CS matters for this question
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How does this work in practice?
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Where did that confidence band come from?

▶ The projection of q1 has uncertainty

SE(q̂1) = SE(α̂)× |∆p|

▶ ∆CS(q̂1, r) is continuous function of q̂1

; Delta Method→ standard errors on ∆CS(q̂1, r)

SE(∆CS(q̂1, r)) =

∣∣∣∣∂∆CS(q̂1, r)
∂q1

∣∣∣∣× SE(q̂1)

; Or (Bayesian) bootstrap the whole thing
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How does this work in practice?

⇒ What if I want to use log units in the regression?

; Elasticity range bounds (on the log-log ATE)
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How does this work in practice?
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How does this work in practice?

▶ What if I want to use log units in the regression?

– Elasticity range bounds (on the log-log ATE)

⇒ What if I don’t have an exogenous price shock?
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How does this work in practice?

▶ A common approach: IV regression

1(purchase)imt = αpimt + FEm + νimt (4)

pimt = pm0 + Zimt∆p+ ϵimt (5)

▶ interpretation: α is the local average treatment effect of∆p

(under IV monotonicity)

▶ interpretation: α is the average gradient of the demand curve(s)

⇒ The rest goes the same as before
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How does this work in practice?
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How does this work in practice?

▶ What if I want to use log units in the regression?

– Elasticity range bounds (on the log-log ATE)

▶ What if I don’t have an exogenous price shock?

⇒ What about second derivatives?
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Robustness in Curvature
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Welfare bounds for robustness in curvature

Suppose that the graph of A v.s. B has a second derivative bounded between γ and γ:

1
B′(p)

d
dp

[
A′(D(p))D′(p)

B′(p)

]
∈ [γ, γ] for p ∈ [p0, p1].

where −∞ < γ ≤ 0 ≤ γ < +∞.

What does this imply about the largest and smallest possible values of∆CS?

Theorem (welfare bounds for curvature).

Under the above assumption, the largest and smallest possible values of the change

in consumer surplus∆CS are attained by demand curveswhose gradients, in units
of A(q)/B(p), are either 1-piece or 2-piece linear interpolations.
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Explicit characterization of welfare bounds for curvature

Define the gradients (in units of A(q)/B(p)), h∗, h∗ : [B(p0),B(p1)] → R, as follows:

h∗(s) =


−A(q0)− A(q1)
B(p1)− B(p0)

−
γ

2
[B(p0) + B(p1)] if γ ≥ −2 [A(q0)− A(q1)]

[B(p1)− B(p0)]
2 ,−γ

[
B(p1)−

√
2[A(q1)−A(q0)]

γ

]
if s > B(p1)−

√
2[A(q1)−A(q0)]

γ
,

−γs if s ≤ B(p1)−
√

2[A(q1)−A(q0)]
γ

,
if γ < −2 [A(q0)− A(q1)]

[B(p1)− B(p0)]
2 ;

h∗(s) =



−γs if s > B(p0) +
√

2[A(q0)−A(q1)]
γ

,

−γ
[
B(p0) +

√
2[A(q0)−A(q1)]

γ

]
if s ≤ B(p0) +

√
2[A(q0)−A(q1)]

γ
,

if γ ≥ 2 [A(q0)− A(q1)]

[B(p1)− B(p0)]
2 ,

−A(q0)− A(q1)
B(p1)− B(p0)

− γ

2
[B(p0) + B(p1)] if γ <

2 [A(q0)− A(q1)]

[B(p1)− B(p0)]
2 .

Then: 
∆CS =

∫ p1

p0

A−1

(
A(q0) +

∫ B(p)

B(p0)

[
h∗(s) + γs

]
ds

)
dp,

∆CS =

∫ p1

p0

A−1

(
A(q0) +

∫ B(p)

B(p0)
[h∗(s) + γs] ds

)
dp.
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This talk: a special case

▶ Special case: parameterize curvature by ρ-concavity and ρ-convexity.

– Equivalent to setting A(q) = qρ/ρ and B(p) = p in our framework:

D(p) is ρ-concave/convex ⇐⇒ qρ

ρ
is concave/convex in p.

– Introduced in the economics literature by Caplin and Nalebuff (1991a,b).

– ρ ∈ R parametrizes how “concave” or “convex” a function is.

– Examples: ρ = 0 (log-concavity/convexity); ρ = 1 (concavity/convexity).
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How robust are welfare conclusions to curvature?
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How robust are welfare conclusions to curvature?

▶ Parameterize curvature w/ ρ-concavity/convexity (Caplin and Nalebuff, 1991b)

– The more convex D(p) is, the smaller ∆CS is

– The more concave D(p) is, the larger ∆CS is

– We parametrize “more” with ρ

▶ How concave can D(p) be to flip the conclusion ∆CSlinear −W > 0?

– Given ρ, characterize the lower bound on ∆CS

⇒ The lower bound is attained by a ρ-linear curve

⇒ Find smallest ρ s.t. ∆CSρ −W ≤ 0
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Welfare bounds implied by ρ-curvature of demand in price

Theorem (welfare bounds for ρ-convex demand).

If demand is ρ-convex in price, the lower bound is given by a 2-piece ρ-linear interpolation

and the upper bound is given by a 1-piece ρ-linear interpolation.

Theorem (welfare bounds for ρ-concave demand).

If demand is ρ-concave in price, the lower bound is given by a 1-piece ρ-linear interpolation

and the upper bound is given by a 2-piece ρ-linear interpolation.

Special cases:

▶ ρ = 0: exponential interpolation is extremal for log-convex and log-concave demand.

▶ ρ = 1: linear interpolation is extremal for convex and concave demand.
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Bounding welfare with demand curvature: ρ-concave demand

Theorem (welfare bounds for ρ-concave demand).

If demand is ρ-concave in price, the lower bound is given by a 1-piece ρ-linear

interpolation and the upper bound is given by a 2-piece ρ-linear interpolation.

Recall:

▶ D(p) is ρ-concave if D′(p) [D(p)]ρ−1 is decreasing in p.

▶ D(p) is ρ-linear if D(p) = [qρ0 − β (p− p0)]
1/ρ for some β ≥ 0.

Skip Proof
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Step #1: change of variables

Variable change:

h(p) = −D′(p) [D(p)]ρ−1 =⇒ [D(p)]ρ = qρ0 − ρ

∫ p

p0
h(s) ds.

Constraint (on the mean of h):

H =

{
h is increasing s.t.

∫ p1

p0
h(s) ds =

qρ0 − qρ1
ρ

}
.

Welfare: 
∆CS = max

h∈H

∫ p1

p0

[
qρ0 − ρ

∫ p

p0
h(s) ds

]1/ρ
dp,

∆CS = min
h∈H

∫ p1

p0

[
qρ0 − ρ

∫ p

p0
h(s) ds

]1/ρ
dp.

Introduction Framework Robustness in Gradients Robustness in Curvature Conclusion 53



DR
AF
T

Step #1: change of variables

Variable change:

h(p) = −D′(p) [D(p)]ρ−1 =⇒ [D(p)]ρ = qρ0 − ρ

∫ p

p0
h(s) ds.

Constraint (on the mean of h):

H =

{
h is increasing s.t.

∫ p1

p0
h(s) ds =

qρ0 − qρ1
ρ

}
.

Welfare: 
∆CS = max

h∈H

∫ p1

p0

[
qρ0 − ρ

∫ p

p0
h(s) ds

]1/ρ
dp,

∆CS = min
h∈H

∫ p1

p0

[
qρ0 − ρ

∫ p

p0
h(s) ds

]1/ρ
dp.

Introduction Framework Robustness in Gradients Robustness in Curvature Conclusion 53



DR
AF
T

Step #1: change of variables

Variable change:

h(p) = −D′(p) [D(p)]ρ−1 =⇒ [D(p)]ρ = qρ0 − ρ

∫ p

p0
h(s) ds.

Constraint (on the mean of h):

H =

{
h is increasing s.t.

∫ p1

p0
h(s) ds =

qρ0 − qρ1
ρ

}
.

Welfare: 
∆CS = max

h∈H

∫ p1

p0

[
qρ0 − ρ

∫ p

p0
h(s) ds

]1/ρ
dp,

∆CS = min
h∈H

∫ p1

p0

[
qρ0 − ρ

∫ p

p0
h(s) ds

]1/ρ
dp.

Introduction Framework Robustness in Gradients Robustness in Curvature Conclusion 53



DR
AF
T

Step #2: establishing a partial order

Definition: h1 ⪰ h2 if h1 is a mean-preserving spread of h2, i.e.,

h1 ⪰ h2 ⇐⇒
∫ p

p0
h1(s) ds ≥

∫ p

p0
h2(s) ds ∀ p ∈ [p0, p1].

▶ This defines a partial order onH.

⇒ Can think of this as second-order stochastic dominance.

⇒ Because h is increasing, can think of h as a CDF (appropriately shifted and scaled).
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Step #2: connecting to welfare

Lemma: The welfare objective is decreasing in the partial order ⪰, i.e.,

h1 ⪰ h2 =⇒
∫ p1

p0

[
qρ0 − ρ

∫ p

p0

h1(s) ds
]1/ρ

dp ≤
∫ p1

p0

[
qρ0 − ρ

∫ p

p0

h2(s) ds
]1/ρ

dp.

Proof: Pointwise comparison of the integrands.

Corollary. The lower (resp., upper) bound is attained by iteratively applyingmean-

preserving spreads (resp., mean-preserving contractions) to h(p).
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Step #3: deriving the lower bound

Consider the density that generates h(p), where h(p) is viewed as a CDF:

p0 p1
0

0.2

0.4

0.6

0.8

1

p
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Step #3: deriving the lower bound

So the h(p) that attains the lower bound on welfare is constant between p0 and p1:
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Step #3: deriving the upper bound

Similarly, the h(p) that attains the upper bound on welfare is a step function.
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Step #3: deriving the upper bound

Similarly, the h(p) that attains the upper bound on welfare is a step function.
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Step #3: deriving welfare bounds

▶ Mapping back from h(p) into demand curves D(p):

h(p) is constant in p ⇐⇒ −D′(p) [D(p)]ρ−1 is constant in p

⇐⇒ D(p) = [qρ0 − β (p− p0)]
1/ρ

.

Note:

qρ1 = qρ0 − β (p1 − p0) =⇒ β =
qρ0 − qρ1
p1 − p0

.

▶ This proves the bounds for ρ-concave demand:

– The lower bound is attained by a 1-piece ρ-linear interpolation.

– The upper bound is attained by a 2-piece ρ-linear interpolation.

▶ The same proof strategy works for ρ-convex demand.
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Example: evaluating the deadweight loss of the Trump tariffs

Source: Amiti, Redding and Weinstein (2019)
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Example: evaluating the deadweight loss of the Trump tariffs

Source: WSJ Editorial Board
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Interpreting the tariff DWL Estimates

▶ Contextualizing numbers. The tariff revenue gained over 2018 is $15.6 billion.

– An isoelastic interpolation yields a DWL estimate of $12.6 billion

– A linear interpolation yields a DWL estimate of $16.8 billion.

▶ Positive Welfare Criterion. Could added domestic manufacturing wages make
up for the DWL?

– Suppose the trade war recouped the 35,400 manufacturing jobs lost over the 2010s

; $1.86 billion/year assuming a $52,500 average wage

; Could this exceed the DWL?
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Could the tariffs be worth it?
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Welfare bounds implied by ρ-curvature of log-demand in log-price

Theorem (welfare bounds for ρ-convex demand).

If log-demand is ρ-convex in log-price, the lower bound is given by a 2-piece ρ-isoelastic

interpolation and the upper bound is given by a 1-piece ρ-isoelastic interpolation.

Theorem (welfare bounds for ρ-concave demand).

If log-demand is ρ-concave in log-price, the lower bound is given by a 1-piece ρ-isoelastic
interpolation and the upper bound is given by a 2-piece ρ-isoelastic interpolation.

Special case:

▶ ρ = 1: isoelastic interpolation is extremal for demand with decreasing elasticity

(Marshall’s second law) and demand with increasing elasticity.
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Common interpolations as assumptions on demand curvature

Theorem (Bounding functions for concave-like curvatures).

The lower bound for the change in consumer surplus are attained by:

▶ concave demand: a linear interpolation; D(p) = θ1 − θ2p

▶ log-concave demand: an exponential interpolation; D(p) = θ1e−θ2p

▶ decreasing MR: a constant MR (zipf) interpolation; D(p) = θ1 (p− θ2)
−1

▶ decreasing elasticity: a isoelastic interpolation; D(p) = θ1p−θ2
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Relationships between curvature assumptions

Concave-like assumptions

(A1) Decreasing elasticity

(A2) Decreasing MR

(A3) Log-concave demand

(A4) Concave demand

Appendix A Relationships between assumptions

In this appendix, we demonstrate the relationships between the di↵erent assumptions (A1)–(A8)

introduced in Section 2. Specifically, we show that

(A1)

(A4) (A3) and (A7) (A6).

(A2)

(A4) =) (A3)

Proof. Given a concave demand curve D(p), we show that D(p) must also be log-concave. To this

end, suppose on the contrary that there exist pH > pL such that

D0(pH)

D(pH)
>

D0(pL)

D(pL)
=) D(pL)D0(pH) > D(pH)D0(pL).

Since D(p) is concave, D0(pH)  D0(pL); since D(p) is decreasing, D0(p)  0 and D(pL) � D(pH).

Thus

D(pL)D0(pH)  D(pH)D0(pH)  D(pH)D0(pL).

This is a contradiction. Hence D(p) is log-concave.

(A3) =) (A1)

Proof. Given a log-concave demand curve D(p), we show that D(p) must also satisfy Marshall’s

second law. For any pH > pL, log-concavity implies that

D0(pH)

D(pH)
 D0(pL)

D(pL)
.

Since D(p) is decreasing, D0(p)  0. Thus

pHD0(pH)

D(pH)
 pLD0(pH)

D(pH)
 pLD0(pL)

D(pL)
.

Since this holds for any pH > pL, it follows that D(p) satisfies Marshall’s second law.

39

Convex-like assumptions

(A6) Convex demand

(A7) Log-convex demand

Appendix A Relationships between assumptions

In this appendix, we demonstrate the relationships between the di↵erent assumptions (A1)–(A8)

introduced in Section 2. Specifically, we show that

(A1)

(A4) (A3) and (A7) (A6).

(A2)

(A4) =) (A3)

Proof. Given a concave demand curve D(p), we show that D(p) must also be log-concave. To this

end, suppose on the contrary that there exist pH > pL such that

D0(pH)

D(pH)
>

D0(pL)

D(pL)
=) D(pL)D0(pH) > D(pH)D0(pL).

Since D(p) is concave, D0(pH)  D0(pL); since D(p) is decreasing, D0(p)  0 and D(pL) � D(pH).

Thus

D(pL)D0(pH)  D(pH)D0(pH)  D(pH)D0(pL).

This is a contradiction. Hence D(p) is log-concave.

(A3) =) (A1)

Proof. Given a log-concave demand curve D(p), we show that D(p) must also satisfy Marshall’s

second law. For any pH > pL, log-concavity implies that

D0(pH)

D(pH)
 D0(pL)

D(pL)
.

Since D(p) is decreasing, D0(p)  0. Thus

pHD0(pH)

D(pH)
 pLD0(pH)

D(pH)
 pLD0(pL)

D(pL)
.

Since this holds for any pH > pL, it follows that D(p) satisfies Marshall’s second law.
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Further extensions: welfare beyond ∆CS

#1. Producer surplus works just as well as CS.

#2. Can handle heterogeneity + distributional questions.

#3. Can handle alternative welfare measures like EV and CV.

#4. Can handle multiple objectives at once.

; E.g., Pareto-weighted consumer surplus + DWL.

#5. Can handle multi-product markets.

; At least under constraints on cross-price and own-price elasticities.
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Summing up

▶ This paper. Develops a framework to bound welfare based on economic reasoning.

▶ Building on previous work. Hope to make the case that everyone should use this.

▶ Use cases. Draw/assess conclusions from empirical objects commonly estimated.

▶ Future work. We’re excited about this.

– Robustness for structural IO-style problems (e.g., inference with endogenous pricing,

merger screens, welfare in horizontally differentiated good markets).

– Robustness for new goods and price indices (e.g., the CPI).

– Robustness for larger macro models (e.g., extending ACR, ACDR).
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Mapping CS to EV/CV when income effects are small

Consumer surplus provides bounds for equivalent and compensating variations.

D(p)

HEV(p) HCV(p)

0
q

p

p1

q1

p0

q0

▶ Generally: EV ≤ CS ≤ CV.

▶ When income effects are 0 (e.g., with

quasilinearity): EV = CS = CV.

▶ When income effects are ≈ 0:

EV ≈ CS ≈ CV (Willig, 1976)

(also if demand is pretty inelastic).
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Mapping CS to EV/CV when income effects are big

We can compute EV/CV bounds under assumptions about the Hicksian demand curve.

D(p)

HEV(p) HCV(p)

0
q

p

p1

q1

p0

q0

▶ But! we don’t observe counterfactual
expenditures.

▶ Need to bound e(p1, u0) for CV.

▶ Need to bound e(p0, u1) for EV.

▶ This maps to our “1-point” extension.

Basic Model Skip to End
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