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Motivation

“Economists have made remarkable progress over the last several decades in developing
empirical techniques that provide compelling evidence of causal effects—the so-

called ‘credibility revolution” in empirical work...

But while it is interesting and important to know what the effects of a policy are, we

are often also interested in a normative question as well: Is the policy a good idea or

a bad idea?

...What is the welfare impact of the policy?”

—Finkelstein and Hendren (2020)
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Motivation

» Measuring welfare requires taking a stance on behavior at unobserved points.
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Motivation

» Measuring welfare requires taking a stance on behavior at unobserved points.

» Many papers impose “standard” functional form assumptions.
— Linear interpolation:  Diinear(p) = A — Bp.
» Harberger (1964); Hackmann et al. (2015); Amiti et al. (2019); Hahn and Metcalfe (2021).
— lsoelastic interpolation:  Disoelastic(p) = Ap™©.

» Hausman (1981); Hausman et al. (1997); Brynjolfsson et al. (2003); Fajgelbaum et al. (2020).
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Motivation

» Measuring welfare requires taking a stance on behavior at unobserved points.

» Many papers impose “standard” functional form assumptions.
— Linear interpolation:  Diinear(p) = A — Bp.
» Harberger (1964); Hackmann et al. (2015); Amiti et al. (2019); Hahn and Metcalfe (2021).
— lsoelastic interpolation:  Disoelastic(p) = Ap™©.

» Hausman (1981); Hausman et al. (1997); Brynjolfsson et al. (2003); Fajgelbaum et al. (2020).

[ How robust are welfare estimates to the choice of functional form assumption? ]
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This Paper

P> We establish measures of robustness for quantitative welfare conclusions.

- How much variability in the demand curve can there be before the conclusion flips?

> We parametrize variability through conditions on gradients and curvature.

- In each case, we obtain a single-dimensional statistic of relative robustness.
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This Paper

P> We establish measures of robustness for quantitative welfare conclusions.

- How much variability in the demand curve can there be before the conclusion flips?

> We parametrize variability through conditions on gradients and curvature.

- In each case, we obtain a single-dimensional statistic of relative robustness.

» To guarantee robustness, we establish welfare bounds.

— These bounds are robust: they give the best-case and worst-case welfare estimates

that are consistent with any demand curve within a class of variability.

— These bounds are also simple: we can compute them in closed form.
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Potential Outcomes for Demand: An Experimental Ideal

> Suppose we randomly assign prices for a good to two groups:
— Group t = 0 gets price py.
- Group t = 1 gets price p;.

- We observe individual i buying y;; units at her assigned price p;.
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Potential Outcomes for Demand: An Experimental Ideal

» Suppose we randomly assign prices for a good to two groups:
— Group t = 0 gets price py.
- Group t = 1 gets price p;.

- We observe individual i buying y;; units at her assigned price p;.

» Consider the potential outcomes:

yin ift=1,
yi = .
yio ift=0.
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Potential Outcomes for Demand: An Experimental Ideal

> Suppose we randomly assign prices for a good to two groups.

» Consider the potential outcomes:

yin ift=1,
yi = .
yio ift=0.

» Define aggregate demand:
D(p:) = E[yi] fort=0,1.

> With sample estimator:

A 1T &
D(p:) = n—tZy,-t fort =0,1.
i=1
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Potential Outcomes for Demand: An Experimental Ideal

» Our goal is to estimate the difference in consumer surplus between the two groups.

P
> With D(p), the difference in CS is equal to:
14

prl---@ area A —l—areaB:/ D(p) dp.

: ~(pr—p)D(p1) ?

A g

: » Main challenge:
P o)

! ! ' q D(p) isn’t identified between py and p;.

Framework



Common Approach: Linear Interpolation

» Our goal is to estimate the difference in consumer surplus between the two groups.

P

» Estimate regression:
yit = 61 — bapt + €ir.
> Integrate under D(p) = 0; — 0,p (w.rt. p):

@Iinear = % (P1 - pO) [b(pT) + b(po)] :

Framework



Common Approach: Isoelastic Interpolation

» Our goal is to estimate the difference in consumer surplus between the two groups.

log D(m1) log D(mo)

Framework

» Estimate regression:

log(yit) = 01 — 02 log(pr) + €t

> Integrate under D(log p) = é}p*éz (w.rt. p):

ACS.. . _ (P& — podo) log (p1/po)
isoelastic — | ~ A~ | ,
0g (§1/0) + log (p1/po)

where  §; = D(log p;).



P,

How different are these functional forms?

Framework

Example from Trump tariffs: Amiti et al. (2019).

Setting: 2018 trade war involved tariffs as high
as 30-50%.

Question: What was the DWL due to tariffs?

Approach: Compare monthly prices and

quantities by item in 2017 vs. 2018.

Method: Approximate D(p) with a linear curve

integrate under the curve.

s



DWL estimates based on different functional forms
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Parametrizing variability in demand curves

» Two commonly used functional form assumptions are linear and isoelastic demand.

- Linear demand: constant gradient, zero curvature. ~ of demand w.r.t. price

- Isoelastic demand: constant gradient, zero curvature. ~ of log-demand w.r.t. log-price
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Parametrizing variability in demand curves

» Two commonly used functional form assumptions are linear and isoelastic demand.

- Linear demand: constant gradient, zero curvature. ~ of demand w.r.t. price

- Isoelastic demand: constant gradient, zero curvature. ~ of log-demand w.r.t. log-price

Generalization: A(q) is affine in B(p), where A, B are continuous and increasing.
~ E.g., A= B =id (linear); A = B = log (isoelastic); A = log, B = id (exponential)...

~ Would welfare conclusions derived under these functional forms continue to hold if:
- A(q) had non-constant gradient in B(p)?

- A(q) had non-zero curvature in B(p)?

N\

Framework



Range of gradients along the demand curve

Under the assumption of linear demand, suppose
p/\

ACSﬁnear —W <o.

This assumes D/(p) = constant = — [, for all p.
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Range of gradients along the demand curve

Under the assumption of linear demand, suppose
p/\

ACSlinear —W <o.

This assumes D/(p) = constant = — 3, for all p.

What is the smallest r s.t.

D(p) D/(p) € [_5avg/(1 _r)7_5avg(1 _r)]a re [07 1]’
q but the curve D(p) flips the conclusion:
ACS—W > 07

Framework 15



Range of gradients along the demand curve

Under the assumption that A(q) is affine in B(p),

jos}
—~
<
N

\

4

suppose
ACS—W <.

This assumes that the gradient of A vs. B is constant.
What is the smallest r s.t. the gradient of Avs. Bis in

[_/Bavg/(1 - r) ) _5avg(1 - r)], re [07 1]7

but the curve D(p) flips the conclusion:

ACS—W > 07

Framework



Robustness in Gradients

Robustness in Gradients



Welfare bounds for robustness in gradients

Suppose that the graph of A v.s. B has a gradient bounded between 3 and B, ie.,

A'(D(p))D'(p)

Blp)  C [8,8] for p € [po, p1]-

What does this imply about the largest and smallest possible values of ACS?

Robustness in Gradients



Welfare bounds for robustness in gradients

Suppose that the graph of A v.s. B has a gradient bounded between 3 and B, ie.,

A'(D(p))D'(p)

Blp)  C [8,8] for p € [po, p1]-

What does this imply about the largest and smallest possible values of ACS?

Theorem (welfare bounds for gradients).

Under the above assumption, the largest and smallest possible values of the change

in consumer surplus ACS are attained by 2-piece A-B-linear interpolations.

Robustness in Gradients 18



Defining 1-piece and 2-piece interpolations

p/\

(1-piece) linear
pib---- interpolation
pof---- TR

. . D(p)
0 T o

aYy

Robustness in Gradients
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Defining 1-piece and 2-piece interpolations

(1-piece) A-B-linear

B(p1) |---- interpolation
) e o)
o A@) Al Al9)

Robustness in Gradients

2-piece A-B-linear

interpolation

B(po) f---- /
e > o)
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Welfare bounds: Deriving a threshold

Theorem (welfare bounds for gradients).

Under the above assumption, the largest and smallest possible values of the change

in consumer surplus ACS are attained by 2-piece A-B-linear interpolations.

P

D(p)

> g

0 q1 9o
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Welfare bounds: Deriving a threshold

Theorem (welfare bounds for gradients).

Under the above assumption, the largest and smallest possible values of the change

in consumer surplus ACS are attained by 2-piece A-B-linear interpolations.

p/\ p/\
B —o0,
B — —o0 pif---
! T Dlp) i ¥ D(p)
1 1 )q 1 1 >q
0 q1 9o 0 q1 qo

Robustness in Gradients



Geometric derivation of welfare bounds

P B(p)
Prp---- * B(p1) | ---- ®
] R . S Blpr)[=mdoo oo
0 ql‘ qlo e 0 A(I(h) A(IQO) P A9
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Geometric derivation of welfare bounds

N
p1p---- ®
Popr---- PR
| ® o
1 1 ) > A
0 i 0 9 (9)
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Geometric derivation of welfare bounds

N
p1p---- ®
Popr---- PR
| ® o
1 1 ) > A
0 i 0 9 (9)
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P

Geometric derivation of welfare bounds

pif----@

Introduction

Framework

Robustness in Gradients
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Robustness in Curvature Conclusion
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P

Geometric derivation of welfare bounds @&&X»

pif----@

Introduction

Framework

Robustness in Gradients
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Geometric derivation of welfare bounds

P B(p)

Prp---- Q B(pr) | ----

] R . S Blpu) [ -2mdmee o .
e e
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Geometric derivation of welfare bounds

P B(p)
Prp---- B(pr) | ----
&l i > o) Blpu) [ -2mdmee o .

0 ql‘ qlo e 0 A(I(h) A(IQO) P A9
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What if we have more price points?

N B(p)
Pap----® Bp:) [ ----®
pii--—-i--® B(pi)|----4---@
4 A A

\ \ ! g | | | g
o ol Alg)Alq)A(e) (9)

Robustness in Gradients 23



What if we have more price points?

P

p2r----@

P """'"..
) S

Y o)

1 1 1 >q
0 92 q1 qo
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What if we have more price points?

[N

p2p---- ®
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p2

P1
Po

What if we have more price points?

Robustness in Gradients
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How does this work in practice?

> Suppose we observe price + quantity data for a good in a few markets at t = {0, 1}
» For now: suppose there was an exogenous price shock at t = 1
e.g. animport tariff (w/ pass through 1)

e.g. alocal subsidy/discount in an experiment or promotion
1000

750
500
250 I I
0 . ‘ ‘
1 2 3 4 5

Market
TimeB0 1

Number of Purchases

Robustness in Gradients
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How does this work in practice?

» We observe different pre/post price points in each market...

» But the markets are also different...

Robustness in Gradients
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How does this work in practice?

» We observe different pre/post price points in each market...

» But the markets are also different...

~ In this example: RCL logit with market FEs

1.00
0.75
©
[
©
£0.50
[
a
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0.00%5 4 25 5.0 75 10.0
Price

Market®1©@20©3 @405

Robustness in Gradients
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How does this work in practice?

> We don’t have really have enough data for BLP

= What do we do?

Robustness in Gradients
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Common Approach: Linear Interpolation

» Our goal is to estimate the difference in consumer surplus between the two groups.

P

» Estimate regression:
yit = 61 — bapt + €ir.
> Integrate under D(p) = 0; — 0,p (w.rt. p):

@Iinear = % (P1 - pO) [b(pT) + b(po)] :

Robustness in Gradients 27



How does this work in practice?

» A common approach: (diff in diff) linear regression:
dmt = OPmt + FEm + Umt

= interpretation: « is the average treatment effect of Ap

= interpretation: « is the average gradient of the demand curve(s)

Robustness in Gradients
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How does this work in practice?

» A common approach: (diff in diff) linear regression:

dmt = OPmt + FEm + Umt (1)

= interpretation: « is the average treatment effect of Ap
= interpretation: « is the average gradient of the demand curve(s)

~ we can assume demand is linear/isoelastic/etc., and extrapolate

Robustness in Gradients 28



How does this work in practice?

—
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Loss in CS
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Introduction  Framework Robustness in Gradients Robustness in Curvature Conclusion



How does this work in practice?

» A common approach: (diff in diff) linear regression:

gmt = QPpmt + FEm 4 Vit

= interpretation: « is the average gradient of the demand curve(s)
= we can assume demand is linear/isoelastic/etc., and extrapolate

~ s this a good approximation?

Robustness in Gradients

2
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How does this work in practice?

1.5

Loss in CS

r
- linear - exponential - isoelastic -true loss in CS

Robustness in Gradients



How does this work in practice?

» A common approach: (diff in diff) linear regression:

gmt = QPpmt + FEm 4 Vmt

= interpretation: « is the average gradient of the demand curve(s)

= we can assume demand is linear/isoelastic/etc., and extrapolate

= Is this a good approximation?

~ In practice, we can’t know the truth

~> But we can construct bounds to see how far off we might be

Robustness in Gradients

®3)
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How does this work in practice?

1 2 | 3 | 4 5
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Robustness in Gradients
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How does this work in practice?

For each market...
» Take py, p1, go and impute g1 = qo + &Ap

» For r € [0, 1], compute bounds on ACS w/ Theorem 1

Robustness in Gradients
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How does this work in practice?

For each market...
» Take py, p1, go and impute g1 = qo + &Ap

» For r € [0, 1], compute bounds on ACS w/ Theorem 1

Suppose the price shock had a positive welfare externality W

» Policy question: Is the externality benefit W bigger than the cost ACS?

Robustness in Gradients
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How does this work in practice?

For each market...
Take po, p1, go and impute g1 = qo + &Ap

For r € [0, 1], compute bounds on ACS w/ Theorem 1

Suppose the price shock had a positive welfare externality W
Policy question: Is the externality benefit W bigger than the cost ACS?

Robustness question:

What is the minimum gradient range s.t. ACS is guaranteed to be below W?

Robustness in Gradients
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How does this work in practice?

1 2 | 3 | 4 5
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How does this work in practice?

For each market...
Take po, p1, go and impute g1 = qo + &Ap

For r € [0, 1], compute bounds on ACS w/ Theorem 1

Suppose the price shock had a positive welfare externality W
Policy question: Is the externality benefit W bigger than the cost ACS?

Robustness question:

What is the minimum gradient range s.t. ACS is guaranteed to be below W?

Note: Only the boundaries on the magnitude of ACS matters for this question

Robustness in Gradients 36



How does this work in practice?
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Where did that confidence band come from?

» The projection of g; has uncertainty

» ACS(qy, r) is continuous function of g
~> Delta Method — standard errors on ACS(gq, r)

8 ACS(q1, r)

x SE(g
941 (@)

SE(ACS(gy,r)) = ‘

~> Or (Bayesian) bootstrap the whole thing

Robustness in Gradients
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How does this work in practice?

= What if | want to use log units in the regression?

~ Elasticity range bounds (on the log-log ATE)

Robustness in Gradients
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How does this work in practice?
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How does this work in practice?

> What if | want to use log units in the regression?

- Elasticity range bounds (on the log-log ATE)

= What if | don’t have an exogenous price shock?

Robustness in Gradients
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How does this work in practice?

» A common approach: IV regression

1(purchase)mt = apimt + FEm + Vime (4)
Pimt = Pmo + ZimtAp + €ime (5)

> interpretation: « is the local average treatment effect of Ap

(under IV monotonicity)

> interpretation: « is the average gradient of the demand curve(s)

Robustness in Gradients 42



How does this work in practice?

» A common approach: IV regression
1(purchase)imt = apimt + FEm + Vime (4)

Pimt = Pmo + ZimtAp + €imt (5)

> interpretation: « is the local average treatment effect of Ap
(under IV monotonicity)

> interpretation: « is the average gradient of the demand curve(s)

= The rest goes the same as before

Robustness in Gradients 42



How does this work in practice?

1 2 3 4 5
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43



How does this work in practice?

> What if | want to use log units in the regression?

- Elasticity range bounds (on the log-log ATE)

> What if | don’t have an exogenous price shock?

= What about second derivatives?

Robustness in Gradients
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Robustness in Curvature

Robustness in Curvature
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Welfare bounds for robustness in curvature

Suppose that the graph of A v.s. B has a second derivative bounded between v and ¥

1 d [A’(D(p))D’(p)
B'(p) dp

€ly,y] f € |po, p1]-
B (p) ] [v,7] for p € [po, pi]
where —oo <7 <0<7% < +o0.

What does this imply about the largest and smallest possible values of ACS?

Robustness in Curvature 46



Welfare bounds for robustness in curvature

Suppose that the graph of A v.s. B has a second derivative bounded between v and ¥

1 d [A/(D(P))D/(P)

B’(P)@ B,(p) :| = [177] forp € [P07P1]-

where —00 <Y< 07y < +oo.

What does this imply about the largest and smallest possible values of ACS?

Theorem (welfare bounds for curvature).

Under the above assumption, the largest and smallest possible values of the change
in consumer surplus ACS are attained by demand curves whose gradients, in units

of A(q)/B(p), are either 1-piece or 2-piece linear interpolations.

Robustness in Curvature 46



Explicit characterization of welfare bounds for curvature

Define the gradients (in units of A(q)/B(p)), h*, h« : [B(po), B(p1)] — R, as follows:

_2[A(q) — Alg)]

A(qo) (q ) _ L 0 ’ I
7) [B(P )+ B(pi)] 7=z [B(p1) — B(po)]”
h*(s) = 2[A(q1)—A(qo . A1) —Alq
) - B(P1 “ )1 () ff5> B(pr) — /el )1_ @, i _Z[A(QO)—A(%)};
if s < B(p1) — w, [B(p1) — B(po)]
if s > B(po) + 72[/\(%);/«(;1)]7 i > 2[A(q0) — A(q1)]
ho(s) = el B(PO) + Z[A qO)l ALl if s < B(po) + M, = [B(p1) — B(po)]*’
_Alp) —Alg) 7 = o 2[A(q) = Alq)]
By ) 31606+ 800 7 8o — BT
Then: L p1 B(p)
ACS = AT 0 h*(s s| ds | dp,
/ (("”/m[ (5) + 5] ) p

B(p)
ACS = / < q0)+/( : [h«(s) + 7s] ds> dp.

Robustness in Curvature 47



This talk: a special case

P Special case: parameterize curvature by p-concavity and p-convexity.

Equivalent to setting A(q) = g°/p and B(p) = p in our framework:

el
. q . .
D(p) is p-concave/convex <= —— is concave/convex in p.

- Introduced in the economics literature by Caplin and Nalebuff (1991a,b).
- p € R parametrizes how “concave” or “convex” a function is.

- Examples: p = 0 (log-concavity/convexity); p = 1 (concavity/convexity).

Robustness in Curvature
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How robust are welfare conclusions to curvature?

> Parameterize curvature w/ p-concavity/convexity (Caplin and Nalebuff, 1991b)

— The more convex D(p) is, the smaller ACS is
— The more concave D(p) is, the larger ACS is

- We parametrize “more” with p

Robustness in Curvature
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How robust are welfare conclusions to curvature?

> Parameterize curvature w/ p-concavity/convexity (Caplin and Nalebuff, 1991b)

— The more convex D(p) is, the smaller ACS is
— The more concave D(p) is, the larger ACS is

- We parametrize “more” with p

» How concave can D(p) be to flip the conclusion ACSjpeqr —W > 0?

- Given p, characterize the lower bound on ACS
= The lower bound is attained by a p-linear curve

= Find smallest ps.t. ACS, —W <0

Robustness in Curvature
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Welfare bounds implied by p-curvature of demand in price

Theorem (welfare bounds for p-convex demand).

If demand is p-convex in price, the lower bound is given by a 2-piece p-linear interpolation

and the upper bound is given by a 1-piece p-linear interpolation.

Theorem (welfare bounds for p-concave demand).

If demand is p-concave in price, the lower bound is given by a 1-piece p-linear interpolation

and the upper bound is given by a 2-piece p-linear interpolation.

Special cases:

> p = 0: exponential interpolation is extremal for log-convex and log-concave demand.
» p = 1: linear interpolation is extremal for convex and concave demand.

Robustness in Curvature
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Bounding welfare with demand curvature: p-concave demand

Theorem (welfare bounds for p-concave demand).

If demand is p-concave in price, the lower bound is given by a 1-piece p-linear

interpolation and the upper bound is given by a 2-piece p-linear interpolation.

Recall:
» D(p) is p-concave if D'(p) [D(p)]”~" is decreasing in p.

» D(p) is p-linear if D(p) = [q5 — B(p — po)]1/P for some 5 > 0.

Robustness in Curvature
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Step #1: change of variables

Variable change:

ip) =~/ D — (OB =of —p [ " h(s) s
Po

Robustness in Curvature



Step #1: change of variables

Variable change:
p
h(p) = =D'(p) [D(P))*"" = [D(p)) = qé’—p/ h(s) ds.
Po

Constraint (on the mean of h):

p1 qP _ qP
H = {h is increasing s.t. / h(s) ds = 01} :
po p

Robustness in Curvature 58



Step #1: change of variables

Variable change:

) = -0 D) — (o) = ot~ | " h(s) s
Po

Constraint (on the mean of h):

p1 qP _ qP
H = {h is increasing s.t. / h(s) ds = 01} :

po p
Welfare:

Robustness in Curvature
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Step #2: establishing a partial order

Definition: hy > h; if hy is a mean-preserving spread of hs, i.e.,

P P
hy = hy — hi(s) ds > / hy(s) ds Y p € [po, pi]-
Po Po

» This defines a partial order on H.

= Can think of this as second-order stochastic dominance.

= Because h is increasing, can think of h as a CDF (appropriately shifted and scaled).

Robustness in Curvature 54



Step #2: connecting to welfare

Lemma: The welfare objective is decreasing in the partial order >, i.e,

p1 P 1/p P p 1/p
h = h = [qg — p/ hi(s) ds] dp S/ [q{,’ — p/ hy(s) ds] dp.
Po Po Po

Po

Proof: Pointwise comparison of the integrands.

Robustness in Curvature 55



Step #2: connecting to welfare

Lemma: The welfare objective is decreasing in the partial order >, i.e,
P p 1/p P p 1/p
h = h = [qg — p/ hi(s) ds] dp S/ [q{,’ — p/ hy(s) ds] dp.
Po Po Po Po

Proof: Pointwise comparison of the integrands.

Corollary. The lower (resp., upper) bound is attained by iteratively applying mean-

preserving spreads (resp., mean-preserving contractions) to h(p).
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Consider the density that generates h(p), where h(p) is viewed as a CDF:

density

0.8

0.6

0.4

0.2

Step #3: deriving the lower bound

~
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Step #3: deriving the lower bound

Consider the density that generates h(p), where h(p) is viewed as a CDF:

‘I,
0.8 |-
> 0.6
2
(]
< 04|
0.2 ®
£ i S
) : 7
0 | | | |
Po p1
p
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Step #3: deriving the lower bound

Consider the density that generates h(p), where h(p) is viewed as a CDF:
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Consider the density that generates h(p), where h(p) is viewed as a CDF:

density
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Step #3: deriving the lower bound
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So the h(p) that attains the lower bound on welfare is constant between p, and p;:

density

0.8

0.6

0.4

0.2

Step #3: deriving the lower bound
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Step #3: deriving the upper bound

Similarly, the h(p) that attains the upper bound on welfare is a step function.

0.8 |-

density
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Step #3: deriving the upper bound

Similarly, the h(p) that attains the upper bound on welfare is a step function.

il %
0.8 :
> 0.6 %
2 :

(9

S 0.4 :
0.2 }

0 | ; |

Po p1

p
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Step #3: deriving welfare bounds

» Mapping back from h(p) into demand curves D(p):

h(p) is constant in p <= —D'(p)[D(p)]"~" is constant in p

= D(p) =gy —B(p—po)]"".
Note:
9 —qf
@ =q—B(pr—p) = ="
P1— po
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Step #3: deriving welfare bounds

» Mapping back from h(p) into demand curves D(p):

h(p) is constant in p <= —D'(p)[D(p)]"~" is constant in p
= D(p) =1l —B(p—p)]"".

Note:
% %

p: P _ —_ fr— —
g7 = q5 — B(p1 — po) B = I

» This proves the bounds for p-concave demand:
— The lower bound is attained by a 1-piece p-linear interpolation.
— The upper bound is attained by a 2-piece p-linear interpolation.
» The same proof strategy works for p-convex demand.
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Introduction

Example: evaluating the deadweight loss of the Trump tariffs

Steel and E Steel andi
aluminum ¢ aluminum:

($18B) |

— >

China 2
16B,
Canada, | M
Mexico, |
EU($22B) |
—

China 3

China 1
($34B) o)

Average Tariff Rates
3.5 1 Solar
panels
and
washing
machines
301  ($10B)
—
&
15
g 25
L
[
2.0 A
1.5

Framework

2017 2018

Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Source: Amiti, Redding and Weinstein (2019)
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Example: evaluating the deadweight loss of the Trump tariffs

How Many Tariff Studies Are Enough?

The trade war hits consumers and exports, two more papers say.

By The Editorial Board
Jan.20,2020 439 pmET

5 ot pA Texr 169
A

fn

W

Source: WSJ Editorial Board
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Interpreting the tariff DWL Estimates

» Contextualizing numbers. The tariff revenue gained over 2018 is $15.6 billion.

- An isoelastic interpolation yields a DWL estimate of $12.6 billion

— A linear interpolation yields a DWL estimate of $16.8 billion.

» Positive Welfare Criterion. Could added domestic manufacturing wages make
up for the DWL?

— Suppose the trade war recouped the 35,400 manufacturing jobs lost over the 2010s
~ $1.86 billion/year assuming a $52,500 average wage
~ Could this exceed the DWL?
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annual DWL / job ($ thousands)

400

200

—-20.00

Could the tariffs be worth it?

~9.24
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Welfare bounds implied by p-curvature of log-demand in log-price

Theorem (welfare bounds for p-convex demand).

If log-demand is p-convex in log-price, the lower bound is given by a 2-piece p-isoelastic

interpolation and the upper bound is given by a 1-piece p-isoelastic interpolation.

Theorem (welfare bounds for p-concave demand).

If log-demand is p-concave in log-price, the lower bound is given by a 1-piece p-isoelastic

interpolation and the upper bound is given by a 2-piece p-isoelastic interpolation.

Special case:

» p = 1:isoelastic interpolation is extremal for demand with decreasing elasticity

(Marshall’s second law) and demand with increasing elasticity.
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Common interpolations as assumptions on demand curvature

Theorem (Bounding functions for concave-like curvatures).

The lower bound for the change in consumer surplus are attained by:
» concave demand: a linear interpolation; D(p) = 61 — 6,p
» log-concave demand: an exponential interpolation; D(p) = 6,e %P
» decreasing MR: a constant MR (zipf) interpolation; D(p) = 6, (p — 65)
» decreasing elasticity: a isoelastic interpolation; D(p) = 6,p %
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Relationships between curvature assumptions

Concave-like assumptions

] [ Convex-like assumptions

(A1) Decreasing elasticity
(A2) Decreasing MR
(A3) Log-concave demand

(A4) Concave demand
(A1)
(Ad) == (A3)

(A2)

(A6) Convex demand

(A7) Log-convex demand

(A7) == (AG).
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#1.

#2.

#3.

#4.

#5.

Further extensions: welfare beyond ACS

Producer surplus works just as well as CS.
Can handle heterogeneity + distributional questions.

Can handle alternative welfare measures like EV and CV.

Can handle multiple objectives at once.

~ E.g., Pareto-weighted consumer surplus + DWL.

Can handle multi-product markets.

~ At least under constraints on cross-price and own-price elasticities.
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Summing up

» This paper. Develops a framework to bound welfare based on economic reasoning.
» Building on previous work. Hope to make the case that everyone should use this.

> Use cases. Draw/assess conclusions from empirical objects commonly estimated.

» Future work. We’re excited about this.

- Robustness for structural 10-style problems (e.g., inference with endogenous pricing,
merger screens, welfare in horizontally differentiated good markets).

- Robustness for new goods and price indices (e.g., the CPI).

— Robustness for larger macro models (e.g., extending ACR, ACDR).
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Mapping CS to EV/CV when income effects are small

Consumer surplus provides bounds for equivalent and compensating variations.

p
> Generally: EV < CS < CV.

p1
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Mapping CS to EV/CV when income effects are small

Consumer surplus provides bounds for equivalent and compensating variations.

p
> Generally: EV < CS < CV.

» When income effects are 0 (e.g., with

p1 quasilinearity): EV = CS = CV.

» When income effects are =~ 0:
EV =~ CS =~ CV (Willig, 1976)

y q (also if demand is pretty inelastic).

Po

ol
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Mapping CS to EV/CV when income effects are big

We can compute EV/CV bounds under assumptions about the Hicksian demand curve.

p

» But! we don’t observe counterfactual

expenditures.

p1 » Need to bound e(p1, up) for CV.

» Need to bound e(py, uy) for EV.
Po

» This maps to our “1-point” extension.

< Basic Model X » Skip to End

ol
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