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Abstract
We study a setting of non-atomic routing in a net-
work of m parallel links with asymmetry of infor-
mation. While a central entity (such as a GPS nav-
igation system) — a mediator hereafter — knows
the cost functions associated with the links, they
are unknown to the individual agents controlling
the flow. The mediator gives incentive compatible
recommendations to agents, trying to minimize the
total travel time. Can the mediator do better than
when agents minimize their travel time selfishly
without coercing agents to follow his recommen-
dations? We study the mediation ratio: the ratio
between the mediated equilibrium obtained from
an incentive compatible mediation protocol and the
social optimum. We find that mediation protocols
can reduce the efficiency loss compared to the full
revelation alternative, and compared to the non me-
diated Nash equilibrium. In particular, in the case
of two links with affine cost functions, the me-
diation ratio is at most 8/7, and remains strictly
smaller than the price of anarchy of 4/3 for any
fixed m. Yet, it approaches the price of anarchy as
m grows. For general (monotone) cost functions,
the mediation ratio is at most m, a significant im-
provement over the unbounded price of anarchy.

1 Introduction
Popular navigation services such as Waze are used by drivers
both to plan out routes and to optimally navigate real time
road congestion. Waze collects aggregate traffic information
in areas of interest and so can take real time traffic condi-
tions, which are incalculable to individual drivers, into ac-
count when computing optimal route recommendations. As
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such, it is likely that Waze can recommend a route to shorten
the travel time of each individual driver. However, it may not
be possible for each individual user to avoid traffic without
creating congestion on the clearer roads, and it might even be
that such a recommendation leads to longer aggregate routes.

Consider the following simplistic example. Suppose that a
thousand drivers want to route from city Source to city Des-
tination, which is reachable from Source through two paral-
lel roads. The travel time in each of these roads depends on
whether or not an accident has occurred. Specifically, sup-
pose that in each of these roads, in the absence of accidents,
each driver’s trip takes x/1000 hours, where x is the number
of drivers on the road (e.g., if half of the drivers take a road
with no accident, then the travel time of each driver is half an
hour). However, if an accident occurs, then the road becomes
clogged, and each driver’s trip takes one hour, independently
of the number of drivers on the road. Suppose that an accident
occurs on each road with some probability p, which is known
to all drivers, but whether or not an accident has occurred on
a given road is unknown.

If Waze did not exist, then each driver would choose a road
at random. To a first order approximation, we assume that
exactly half of the drivers would take each road. In this case,
one can easily verify that the average time spent per driver is
p2 + 3p(1− p)/2 + (1− p)2/2.

Now suppose that Waze knows exactly which road has had
an accident, and can route each driver to his individually op-
timal road. In this case, in every situation except one where
no accident occurs on either road, each driver would spend
a full hour on the road. The average time spent per driver is
p2 + 2p(1− p) + (1− p)2/2 which is larger than the average
time spent in the absence of Waze.

Taking a closer look at this example, we observe that in this
scenario, the naive Bayes Nash equilibrium, in which half
the players take each road, is actually the socially optimal
routing regardless of the status of the roads (that is, for every
realization of the prior). The equilibrium generated by Waze
corresponds to the full information Nash equilibrium, which
is, in general, not optimal.

Surely, Waze could do better. Indeed, by proposing a ran-
dom route to each driver, Waze could implement the optimal
policy. In more complex examples, Waze could implement
more sophisticated policies (e.g., never consider a specific
road and randomize between the remaining ones). This sce-



nario motivates the main question of this paper - in general,
can Waze always implement the socially optimal solution? If
not, how close to the optimum can it get?

To study this question we consider a non-atomic selfish
routing game, with a source node, a target node, and m par-
allel links. There is a common prior on the cost functions
of each link, known to all players (players do not know the
realization). In addition, there is a mediator (Waze), who
first commits to a mediation policy, then learns the realiza-
tion of the prior, and only then sends recommendations to all
of the players according to the policy he had committed to.
The players (who know the mediator’s strategy but not the re-
alization of the prior) decide which route to take, and incur
the travel cost realized on their route. Because the mediator
cannot inextricably compel agents to follow his recommen-
dations, we restrict attention to incentive compatible policies
employed by the mediator - that is, policies that induce an
equilibrium in which all players are best off by following the
mediator’s recommendation. We refer to such equilibria as
mediated equilibria.

Our model is applicable to a number of additional situa-
tions considered by the congestion game literature. For ex-
ample, the mediator might be interpreted as a manager who
recommends task allocations to teams or machines. If the
difficulty of tasks is realized according to a random process
observed by the manager, this paper asks how much faster
the manager can get a set of tasks done by giving incentive
compatible assignments to each worker, than by revealing his
observations and leaving workers to allocate themselves.

In this model, we establish several results. First, we show
a revelation principle, which implies that restricting attention
to incentive compatible policies is without loss of generality.

Second, we quantify the efficiency loss in this setting us-
ing the mediation ratio, which is the worst-case ratio (over
all possible instances and priors) between the best mediated
equilibrium and the socially optimal one. Clearly, the media-
tor can always commit to implementing the full-information
Nash equilibrium of the game (i.e., by the definition of a
Nash equilibrium, following the mediator’s recommendation
is an equilibrium). Therefore, the mediation ratio is always
bounded from above by the price of anarchy (PoA). We
show that if all cost functions are affine (i.e., of the form
c(x) = ax+ b, where x is the amount of traffic on the road),
then for the case of two parallel links, the mediation ratio is
8/7, and for the case of m links, it is 4m

3m+1 . Recalling that in
this case the PoA is 4/3, we conclude that the mediation ratio
is strictly smaller than the PoA for any fixed number of links,
but approaches the PoA as the number of links grows. In
particular, our results suggest that unlike the PoA, the media-
tion ratio does depend on the network size, yet the worst case
manifests in simple (i.e., parallel-link) networks. For general
(non-decreasing) monotone cost functions, we show that the
mediation ratio for m parallel links is exactly m. This is in
contrast to the PoA, which can be arbitrarily high for non-
affine cost-functions, even in the case of two parallel links.

Related work In a full-information routing game, the Price
of Anarchy (PoA) is defined as the ratio of the worst Nash

equilibrium and the optimal flow, and the Price of Stabil-
ity (PoS) is defined as the ratio of the best NE and the
optimal flow. These measures are well understood in the
full-information case. In particular, for non-atomic routing
games, all Nash equilibria have the same cost (thus, the PoA
and PoS are equal). If all cost functions are affine, then
the PoA is at most 4/3 [Roughgarden and Tardos, 2000;
2004], and this PoA manifests in the simplest network —
one that is composed of two parallel links. In that sense, the
PoA in full-information games is independent of the network
topology [Roughgarden, 2003].

The notion of mediators is central to the study of multi-
agent systems. The simplest form of a mediator introduced in
the game theoretic literature is the notion of a correlated equi-
librium [Aumann, 1974]. Indeed, a correlated equilibrium
is essentially a mediation device that gives recommendation
to agents but cannot enforce behavior. Since then, various
notions of mediators have been introduced in the literature.
These mediators are all reliable entities who behave in a pre-
specified way and cannot enforce behavior:

Monderer and Tennenholtz [Monderer and Tennenholtz,
2009] propose the use of mediators to obtain stability against
deviations by coalitions. Their mediator plays on behalf
of the agents upon their approval and based on their mes-
sages. In other mediation models the mediator is assumed
to be much stronger. For example, Rozenfeld and Tennen-
holtz [Rozenfeld and Tennenholtz, 2007] consider a medi-
ator who can observe the agents’ actions and impose pun-
ishments on those that do not follow his recommendation in
routing games. Davis et. al [Joshua R. Davis and Wexler,
2011] consider a mediator who can persuade agents to let him
play on their behalf by threatening coalitional punishments in
load balancing games. Monderer and Tennenholtz [Monderer
and Tennenholtz, 2003] consider the use of mediators to im-
plement desirable outcomes by means of monetary transfers.
Mediators in games with incomplete information have been
considered by Ashlagi, Monderer and Tennenholtz [Ashlagi
et al., 2009] in the context of position auctions. In contrast to
our model, where the mediator has more information than the
agents, they consider a Bayesian game where the agents have
private types that are unknown to the mediator.

Kremer, Mansour and Perry [Kremer et al., 2013] study
a sequential setting, where a-priori both the mediator and
the agents have only priors over rewards, but the mediator
gains more information as new agents explore different al-
ternatives. The authors characterize the optimal incentive-
compatible recommendation protocol in this setting.

2 Model and Preliminaries
A nonatomic unit of flow must be passed from a source node
to a sink node through a parallel-links network on a set of
links L = {1 . . . ,m}. Each infinitesimal unit of flow is con-
trolled by an independent myopic rational agent who chooses
one link to be routed through. The aggregate decisions of
all agents yield a feasible flow, α = (α1 . . . αm) in which a
measure of αk is routed through link k, with αk ≥ 0 for each
k, and

∑m
k=1 αk = 1. Each link k is associated with a non-

decreasing cost function ck : [0, 1] → R+ which maps every



fraction routed on link k to the cost incurred by each agent
flowing on that link. The social cost of a given tuple of cost
functions and flow is given by cost(c, α) =

∑m
i=1 αkck(αk),

where c = (c1, . . . , cm) is a vector of cost functions, and
α ∈ ∆m is a feasible flow. We consider a Bayesian frame-
work in which agents have incomplete information regarding
the cost functions on the links in the network. We call all
games that follow the description above, Bayesian Conges-
tion Games (BCGs), and focus on two models in particular: a
permutation model and an IID model.

In a permutation model, a set of cost functions
{c1, . . . , cm} are first chosen without repetitions from a mul-
tiset of cost functions {ci : i ∈ I} for some set of indices I ,
and then a permutation function π : [m]→ [m] assigns costs
to the links, such that for every link i ∈ [m], ci = cπ(i). A
special case of the permutation model is one where there is
a known set of m cost functions {c1, . . . , cm} and cost func-
tions on the links are assigned based on the permutation π.
In the permutation model, the agents do not know π, but they
know the set of cost functions and the prior p over its distri-
bution.

The IID model is characterized by a probability distribu-
tion over cost functions F such that for every link k, the
cost function ck is drawn identically and independently from
F . We will denote the realization of cost functions by c =
(c1, . . . , cm) and the common prior regarding c by p.

We further endow the game with an informed, benevolent
mediator who observes the realization of cost functions be-
fore any flow is routed, and can communicate with agents.
The mediator’s action is a policy function, σ, that maps a re-
alization of all cost functions into a set of arbitrary signals,
such that each agent i receives a private signal σi. The me-
diator’s policy is known to all agents, but the realization is
known only to the mediator and no agent has access to the
signals received by other agents.

The strategy of each agent i is a (possibly random) strategy
τi that maps a tuple of the common prior over cost functions
and the signal received by the mediator into one of the m
links. As is standard in the analysis of one-shot Bayesian
games, we focus on strategies that constitute a Bayes Nash
Equilibrium for all agents.

Definition 2.1. [BNE] Given a mediator’s policy σ, a strategy
profile τ is a Bayesian Nash Equilibrium if for each agent
i, playing τi(p, σi) minimizes agent i’s cost when i receives
the signal σi and every agent j 6= i, plays according to τj .
Note that every BNE τ essentially induces a ‘pure’ flow α =
(α1, . . . , αm).1

The mediator may be able to use his knowledge of the cost
realizations to incur a routing flow that is socially preferred
to the flows that would be chosen in his absence, but he can-
not compel agents to take his advice. A mediator’s policy is
said to be implementable if following the mediator’s advice is
Bayesian incentive compatible, or incentive compatible (IC)
for short.

1This is because our model considers a continuum of identical
infinitesimal players so that the flow α does not distinguish between
the composition of each component αk and it is without loss of gen-
erality to assume that agents play deterministic strategies only.

Definition 2.2. [IC] A mediator’s policy σ is incentive com-
patible if:
(1) For every cost realization c, and every agent i , σi ∈ [m]

(i.e., the signal is a recommendation of which route to
follow).

(2) There exists a BNE τ such that τi(p, σi) = σi for all i.
When the mediator invokes an incentive compatible policy

σ, we assume that the BNE in which his recommendations
are followed is played. When the mediator does not invoke
any policy, the players have no information. Since the links
are a-priori indistinguishable to the players, the only BNE is
the one in which 1/m flow is routed on each link. We call
this strategy of the players the uninformed BNE, and call the
equilibrium an uninformed BNE.

In what follows we present a revelation principle for our
setting, implying that we can, without loss of generality, re-
strict attention to IC policies. We omit the full proof, which
employs a standard simulation argument, due to space con-
straints.
Theorem 2.3. [Revelation principle] For every mediator’s
policy σ and corresponding BNE τ that induces a flow α =
(α1, . . . , αm), there exists an incentive compatible policy σ′
that induces the same flow α.

A flow that is induced by an IC policy is referred to as a
mediated equilibrium.
Definition 2.4. [Mediated Equilibrium] Given an IC policy
σ, a mediated equilibrium is a flow ασ = (ασ1 , . . . , α

σ
m) such

that ασk is the measure of players receiving signal k by the
policy σ.
The cost of an IC policy σ is thus given by

cost(σ, p) = Ec∼p [cost(c, α
σ)]

where ασ is the flow induced by σ under prior p.
As we shall soon show, in some cases the unconstrained so-

cial optimal flow cannot be implemented as a Mediated Equi-
librium. To measure the difference from the optimal solution,
we introduce the mediation ratio (MR), defined as the ratio
of the expected costs of best mediated equilibrium flow and
the globally optimal flow.
Definition 2.5. [Mediation Ratio] Given a prior p, the me-
diation ratio (MR) with respect to p is defined as:

MR(p) =

min
σ:σ is IC

Ec∼p [cost(c, α
σ)]

Ec∼p
[
min
α
cost(c, α)

] .

For a family P of priors, the mediation ratio with respect to
P is defined as :

MR(P) = Supp∈PMR(p).

The mediator can always calculate a Nash equilibrium of
the full information game (as he knows the realizations of the
cost functions) and direct the agents accordingly. Incentive
compatibility follows from the properties of Nash equilibria.
Consequently, the mediation ratio is upper bounded by the
price of stability (note that in a non-atomic routing game all
NE of the full information game have the same social cost,
thus the price of anarchy equals the price of stability). We
show several more properties of our models:



Lemma 2.6. The MR in an IID BCG with m links and ar-
bitrary cost distribution F can be no larger than the case
in which F has positive density on only m cost functions:
f(c) > 0 for c ∈ C for some set of costs C with cardinality
|C| = m, and f(c) = 0 otherwise.

The proof of this lemma is omitted due to space constraints
and can be found in the full version of this paper. It is based
on the fact that if the drivers benefit from following the advice
of the mediator in some realization, then the mediator can in-
centivize them to follow the advice in general, even if there
are cases in which following the advice hurts them (as long as
these cases are rare enough). For any F , the MR maximizes
the average ratio between the mediated equilibrium and the
Nash equilibrium across all realization. Thus, if F has sup-
port on more thanm cost functions, theMR is bounded from
above by the MR from a truncation of F that has support on
the worst m costs.
Lemma 2.7. For every m, the MR of a BCG game with m
links in the permutation model is weakly larger than the MR
of a BCG game with m links in the IID model.

Lemma 2.7 follows from the additional randomness that is
endemic to IID games. Given any IID game, we can compute
the MR of the permutation game induced from every set of
cost functions, realizable under the IID model. The highest
MR among these will be higher than theMR of the IID game
as the latter randomizes over socially preferred outcomes and
(as a consequence) has weaker incentive constraints.

Based on the last lemma, lower bounds on the MR that
are established with respect to the IID model apply to both
the IID and the permutation models. We now establish a gen-
eral IC condition that determines whether a policy σ is imple-
mentable in a Permutation BCG.
Lemma 2.8. A policy σ that induces the equilibrium flow
α1, . . . , αm in a Permutation BCG with m parallel links
whose costs are {ci}mi=1 is implementable if and only if

m∑
i=1

αici(αi) ≤
1

m

m∑
i=1

ci(αi). (1)

Proof. Let σ be a policy that generates the flow α1, . . . αm.
We assume that when an agent receives a signal σi and de-
fies the mediator, he randomizes among the remaining links
j 6= i. Under a uniform prior, this implies that σ is incentive
compatible if and only if

m∑
i=1

αi

ci(αi)− 1

m− 1

∑
j 6=i

cj(αj)

 ≤ 0. (2)

Rearranging, and noting that

1

m− 1

m∑
i=1

αi
∑
j 6=i

cj(αj) =
1

m− 1

m∑
i=1

ci(αi) (1− αi) ,

we have that the left-hand side of equation (2) is equal to:
m∑
i=1

αici(αi)−
1

m− 1

m∑
i=1

ci(αi) +
1

m− 1

m∑
i=1

αici(αi)

and simplifying, we obtain the desired condition.

3 Affine cost functions
In the full-information case, if all costs are affine functions,
then the PoA is 4/3 in the case of two links, and this is the
worst-possible ratio across all networks. We show that the
mediation ratio is bounded away from the PoA in the case of
two links, and for any fixed number of links. However, as m
grows, the mediation ratio approaches 4/3. We begin with
the case of two parallel links.

Proposition 3.1. The MR of BCG permutation games with
affine cost functions on two links is at least 8/7.

Proof. Consider a prior p that permutes the costs {c1(x) =
x, c2(x) = 1/2}. Note that the global optimum solves
α∗ ∈ arg max

α
{α2 + 1

2 (1−α)}, and so α∗ = 1
4 , and the opti-

mal social cost is 7/16. To find the best mediated policy, note
that for any policy σ that sends ασ flow to the link with cost
c1(x), an agent who receives a signal σi expects to have been
sent to the link with cost c1(x) with probability ασ . Thus he
faces an expected cost of (ασ)2 + 1

2 (1−ασ) if he follows the
mediator’s policy, or an expected cost of ασ

2 + (1 − ασ)ασ

if he defies the mediator and instead uses the link he was not
sent to. By definition, σ is incentive compatible if and only
if the expected cost of following σ is lower than the expected
cost of defying it for each agent. This reduces to the con-
straint that (ασ)2 − ασ + 1/4 < 0, which is not satisfied
for any ασ ∈ [0, 1]. Thus, the only policy that the mediator
can implement is an uninformative one, under which, agents
randomize uniformly between the two links, yielding a social
cost of 1/2. Putting these together, MR(p) is given by the
ratio of the cost of the uninformed BNE and the cost of the
unconstrained optimum: MR(p) = 1/2

7/16 = 8
7 .

Proposition 3.2. The MR of BCG permutation games with
affine cost functions on two links is at most 8/7.

Proof. Let P be the family of priors on permutations
of costs {c1(x) = a1(x) + b1, c2(x) = a2(x) + b2}
with {a1, a2, b1, b2} ∈ R4

+. As we are interested in
supp∈PMR(p), we consider priors for which the globally
optimal flow is not implementable by the mediator (so that
MR(p) > 1), so that the majority of agents pays a higher
cost than the minority under the globally optimal flow.2 That
is, if for the parameters, {a1, a2, b1, b2}, α∗ is the globally
optimal flow that is not implementable in a mediated equilib-
rium, then Lemma 2.8 implies that

a1α
∗ + b1 ≥ a2(1− α∗) + b2

whenever α∗ > 1/2 on link with cost c1(x). Notice that
when both a1 and a2 or both b1 and b2 are 0, the globally
optimal flow never satisfies this, and so is implementable, a
contradiction. Thus, this restriction imposes a constraint on
the parameters {a1, a2, b1, b2} in the support of p: namely,
that (without loss of generality) a1 > 0 and b2 > 0. The
maximal MR(p) is then obtained from the constrained op-
timization problem that maximizes MR(p), given a1 > 0

2That is, c(α∗) > c(1−α∗) whenever α∗ > 1/2 in the globally
optimal flow.



and b2 > 0.3 The solution to this problem yields the costs
c1(x) = x and c2(x) = 1/2 with MR(p) = 8/7.

We complement this positive result by a negative one,
showing that when m is large, the MR goes to 4/3 in the
IID model, and hence also in the permutation model. Since
the MR is upper bounded by the price of anarchy (which is
bounded by 4/3), this settles the question for large values of
m. Before presenting this result, we introduce several helpful
lemmas.
Lemma 3.3. Consider a set of cost vectors c1, c2, . . . , c`,
where for every i, ci = (ci1, . . . , c

i
m) is a vector of cost func-

tions on the m links. If for every i the best mediated equi-
librium is the uninformed BNE, then for every distribution of
these costs the best mediated equilibrium is the uninformed
BNE (where 1/m is routed on every link).

The full proof, which can be found in the full version of
this paper, shows that if a distribution of cost functions ad-
mits an implementable policy that is a superior to the un-
informed BNE, a realization of costs in the support can be
found that allows for a superior implementable policy inde-
pendently. Toward establishing our negative result, we first
show that in a very simple BCG game, mediation gives no ad-
vantage, and the best mediated equilibrium is the trivial one in
which agents choose which edge to follow uniformly at ran-
dom. The proof, which follows from Lemma 2.8, is omitted
due to space constraints and can be found in the full version.
Lemma 3.4. Consider an instance where for some k (be-
tween 0 and m), there are k cost functions of the form
c(x) = x, and (m−k) cost functions of the form 1/m. Then,
the best mediated equilibrium is the uninformed BNE (where
1/m is routed on every link), independent of k.

We are now ready to present our negative result, by con-
structing a simple BCG for which the MR goes to 4/3 in the
limit as the number of links goes to infinity.
Proposition 3.5. The MR in an IID BCG with m parallel
links and affine cost functions is at least

4

3 + 2 log(m)/m+ (1− 2 log(m)/m)m
. (3)

The proof of Proposition 3.5 considers an IID BCG on m
links, in which each link has cost c(x) = 1/m with prob-
ability p = 2 log(m)/m, and has cost c(x) = x with the
remaining probability. It then shows that the MR of this
BCG is given by equation (3), which approaches 4/3 as m
approaches infinity. As 4/3 is the maximal PoA, it is also the
maximum possible MR, and so this bound is tight. The full
proof can be found in the full version of this paper.

4 General cost functions
As established in the previous section, when the cost func-
tions are restricted to the set of affine functions, the MR in

3That is, for any set of parameters such that a1 > 0 and b > 0,
OPT is given by the solution to the first order condition of social
cost, and the best mediated policy is the uninformed BNE. The max-
imal MR(p) maximizes the ratio of these two costs over the param-
eter space {a1, b1, a2, b2}.

m-link networks converges to the PoA as the number of links
m increases.

In this section we show that this is not the case for general
nondecreasing cost functions. In particular, while the PoA
can be arbitrarily high in this case, the MR never exceeds m.

Theorem 4.1. The MR in a BCG with m links with general
non-decreasing cost functions is at most m.

Before proving Theorem 4.1, we introduce a reduced con-
dition under which a flow can be implemented. We then
show that whenever the optimal flow of a BCG is not im-
plementable, there exists an implementable flow with a social
cost that is within a factor of m of the optimal social cost.

Definition 4.2. A flow α1, . . . αm can be divided into buck-
ets, if there exists a partition of the links in [m] to sets
S1, . . . Sk such that:

1. For any i ≤ k and any two links s, t ∈ Si we have
cs(αs) = ct(αt).

2. If i < j, s ∈ Si and t ∈ Sj then cs(αs) < ct(αt).

3. For every i, let
∑k
j=i |Sj | = mi, and let S≥i = Si ∪

Si+1 ∪ . . . ∪ Sk. We have∑
s∈Si αs∑
s∈S≥i

αs
>
|Si|
mi

4. Denoting Si = {αi1, . . . αir} then αi1, . . . αir can be
implemented on r links.

Note that Definition 4.2 did not require that
∑m
i=1 αi = 1.

Before we show that every flow that can be divided into buck-
ets can be implemented, we introduce the following lemma.

Lemma 4.3. Let α1, . . . αm be a flow that can be divided
into buckets, and let

∑m
i=1 αi = γ. Then

∑m
i=1 αici(αi) ≤

γ
m

∑m
i=1 ci(αi).

Proof. We proceed inductively over the number of links.
When m = 1, the statement holds trivially. Let γ̃ =∑m
i=2 αi = γ−α1, and suppose, for the inductive hypothesis,

that
m∑
i=2

αici(αi) ≤
γ̃

m− 1

m∑
i=2

ci(αi).

Since αi are divided into buckets, by property (2), c1(α1) ≥
1

m−1
∑m
i=2 ci(αi) and by property (3), α1 ≤ γ

m ≤
1
m , and

γ̃
m−1 ≤

1
m . Thus, using the inductive hypothesis, we have

that:
m∑
i=1

αici(αi) = α1c1(α1) +

m∑
i=2

αici(αi)

≤ γ̃

m− 1

m∑
i=2

ci(αi) + α1c1(α1) (4)

≤
(
γ − 1

m

)
m− 1

m∑
i=2

ci(αi) +
1

m
c1(α1) (5)

≤ 1

m

m∑
i=2

ci(αi) +
1

m
c1(α1) =

1

m

m∑
i=1

ci(αi), (6)



where the inequality in (3) comes from plugging in the in-
ductive hypothesis and, since α1 ≤ 1

m , the inequality in (4)
is equivalent to:[

γ − 1

m
− (γ − α1)

] m∑
i=2

ci(αi)

m− 1
+

[
1

m
− α1

]
c1(α1)

= α1

(
m∑
i=2

ci(αi)

m− 1
− c1(α1)

)
+

1

m

(
c1(α1)−

m∑
i=2

ci(αi)

m− 1

)
≥ 0.

The inequality in (5) comes from substituting γ̃
m−1 ≤

1
m .

Corollary 4.4. Let α1, . . . αm, be a flow that can be divided
into buckets. Then it is implementable as a mediated equilib-
rium.

We now prove a stronger statement which implies Theorem
4.1.

Lemma 4.5. Let α1, . . . , αm be an optimal flow on m links.
Then either it is implementable, or there exists another flow
β1, . . . βm on the links, such that

∑
βi =

∑
αi, the cost

is
∑
i βici(βi) ≤ m

∑
i αici(αi), the minimum cost per link

doesn’t decrease, mini ci(βi) ≥ mini ci(αi), and β1, . . . , βm
can be divided into buckets.

Proof. Toward a proof by induction, assume that the lemma
holds for every number of links n < m. Now for m links, if
the optimum is implementable, then we are done. Otherwise,
the IC constraint must be violated for α so that

m∑
i=1

αici(αi) >
1

m

m∑
i=1

ci(αi)

and so there must exist some k such that αk ≥ 1
m and

ck(αk) ≥ 1
m

∑m
i=1 ci(αi). Choose k to maximize ck(αk).

Let J = {i : ci(αi) > ck(αk)}, the set of links with costs
strictly higher than ck(αk) under α. By the definition of k,
for every i ∈ J we have that αi < 1/m. Since |J | < m, we
apply the induction hypothesis on J , and get flow βi1 . . . βir
which can be divided into buckets. Let S1, . . . Sb denote those
buckets. Let C = {i : i 6∈ J}, where C stands for cheap
links. Note that: ∑

i∈C αi∑
i∈m αi

≥ |C|
m
.

Let {βi}i∈C be a full information Nash equilibrium that
routes

∑
i∈C αi flow on the links of C, so that ci(βi) =

cj(βj) for every pair of links i, j. We have that:

1. The minimal cost didn’t decrease mini∈C ci(βi) ≥
mini∈C ci(αi).

2. The total cost increased by at most a factor of m:∑
i∈C

βici(βi) ≤ m
∑
i∈C

αici(αi).

3. For every i, j ∈ C we have that ci(βi) = cj(βj).

We can now take the flow {βi}i∈J ∪ {βi}i∈C , and get a flow
β1, . . . βm. This new flow can be partitioned to b+ 1 buckets,
where the cheapest bucket is {βi}i∈C and the other buckets
are S1, . . . Sb. We also have:

1. The minimal cost did not decrease mini∈[m] ci(βi) =
mini∈C ci(βi) ≥ mini∈C ci(αi) = mini∈[m] ci(αi),
since we chose C to contain the cheap links.

2. As for the social cost, we have∑
i∈[m]

βici(βi) =
∑
i∈C

βici(βi) +
∑
i∈J

βici(βi)

≤ m
∑
i∈C

αici(αi) +m
∑
i∈J

αici(αi) = m
∑
i∈[m]

αici(αi).

Which completes the proof.

Moreover, the upper bound onMR(P) in games with gen-
eral cost functions is tight. As we demonstrate in the follow-
ing lemma, there exist BCGs on m links and priors p with
MR(p) = m. Thus, MR(P) over all such priors is exactly
m.
Theorem 4.6. The MR in a BCG with m links congestion
game and general non-decreasing cost functions is at least
m.
Proof. Consider a game with m links, each of which has a
step cost function that assigns cost 0 if the amount of flow on
it is x ∈

[
0, 1

m

)
and assigns cost 1 if x ∈

[
1
m , 1

]
. The optimal

policy is to route slightly less than 1
m of the flow on each one

of m−1 links, and the remaining flow through the remaining
link. This way, only the flow that goes through the last link
incurs a positive cost of 1, thus the social cost is slightly more
than 1

m .
We now claim that the only implementable policy is one

that sends exactly 1/m of the flow on each one of them links,
yielding an expected cost of 1. Suppose toward contradiction
that there were a policy σ that induced an equilibrium ασ

which produced a social cost in which only k out of m links
had flow greater or equal to 1/m, for some k < m. For at
least one of these links i, it holds that αi > 1/m; therefore
the sum of flows on these k links is strictly greater than k/m.
Consequently, an agent who follows the mediator’s recom-
mendation incurs an expected cost that is strictly greater than
k/m. On the other hand, choosing a link uniformly at ran-
dom yields an expected cost of k/m. We conclude that the
only implementable flow routes 1/m of the flow through each
link, yielding a social cost of 1.

5 Conclusion
We study a class of Bayesian non-atomic parallel-links rout-
ing games in which agents have incomplete information about
the costs of the links in the game, but a knowledgeable me-
diator can correlate outcomes by giving incentive compatible
recommendations in order to minimize the total travel time
of the system. We define the mediation ratio: the ratio be-
tween the mediated equilibrium arising from IC recommen-
dations and the social optimum, which is always bounded
from above by the price of anarchy. We find that for gen-
eral monotone cost functions, while the price of anarchy is
unbounded, the mediation ratio for m parallel links is exactly
m. The main open question left by our work is proving me-
diation ratio bounds for general road networks. For price of
anarchy, the worst case manifests in the parallel link networks
that we have studied.
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