## Can Usage-Based Pricing Reduce Congestion?

| Itai Ater | Adi Shany | Brad Ross | Eray Turkel | Shosh Vasserman |
| :---: | :---: | :---: | :---: | :---: |
| Tel Aviv U | Tel Aviv U | Stanford | Google | Stanford |
| Coller | Coller | GSB |  | GSB |

## Motivation: traffic congestion is very costly

# Traffic jams cost US $\mathbf{\$ 8 7}$ billion in lost productivity in 2018, and Boston and DC have the nation's worst 

PUBLISHED TUE, FEB 12 2019.12:01 AM EST I UPDATED TUE, FEB 12 2019.12:39 PM EST
©LEBEAUCARNEWS

## Motivation: Gov'ts are adopting congestion pricing policies

Where (And Why) LA Metro Is Exploring 'Congestion Pricing' (AKA Making You Pay To Use Certain Roads)

Seattle explores its options for congestion pricing
The city soys it wants to find an equitable woy to toll cily streets


By Bivin Fonneat
Pyelatha Fos 10: 20e 1420 PM


## NYC Moving Ahead With Congestion Pricing Toll Plan: Here's What It Looks Like

Motorists entering Manhattan below 60th Street would be charged a toll electronically, with the revenue (estimated at \$1 billion annually) used to back borrowing for capital improvements to the MTA's


## Motivation: Congestion pricing seems like a good idea

Erik Brynjolfsson © @erikbryn•Aug 21
The congestion tax is offset by fewer dead hours sitting in traffic.
What's more, unlike time in traffic, the revenue lowers other taxes and boosts services.

Rationing limited road space by who's most willing to burn time and money sitting in traffic is incredibly wasteful.

## C Bloomberg CityLab @ © CityLab • Aug 20

New York City hopes congestion pricing will create much-needed revenue for MTA - but the eye-popping costs to motorists has some folks calling for an alternative fundraising source.
@MichelleKaske reports: trib.al/ZQbvNPV


Alex Imas
@alexoimas
Replying to @erikbryn
I'm sorry if I'm missing something, but isn't this tax pretty regressive? Low income people who have been priced out of city will have to choose to pay this high tax or "time tax" of stringing together commute on increasingly unreliable MTA. Should at least be means tested, no?

## Motivation: Does congestion pricing even work?

- Zone-based prices may backfire
$\Rightarrow$ Travel time in London nearly back to pre-charging levels (TfL)
$\Rightarrow$ Fixed entry fees would encourage idling in NYC (Rosaia, 2020)
- Price elasticities might be too small to shift behavior
$\Rightarrow$ Experimental evidence from Bangalore (Kreindler, 2022)
$\Rightarrow$ Experimental evidence from Australia (Martin and Thornton, 2017)
- Distributional effects may bind
- Willingness to pay is neither flat nor proportional to income (Bento, Roth \& Waxman (2020))
- Pigouvian tolling would hurt low-income drivers (Hall 2020)


## Can Congestion Prices Target the Right People?



## The "Value Road" Pilot

## The "Value Road" Pilot



## Experimental Design: "Value Road"

- Nationwide pilot run by the Highway Administration
$\Rightarrow$ We are their economics analysis team
- 10k participants recruited across Israel b/w Jan 2020 and June 2021
- Each participant gets a GPS device installed in their car
$\Rightarrow$ "Monitoring" for 6 months w/ no communication
$\Rightarrow$ "Active" for the next 12 months+
- Invited to download an app w/ usage info
- Initial budget 4500 NIS ( $\sim 1,300$ )
- Subtract per-km fee based on location + time
- Budget remainder paid out at license-renewal date


## Did Prices Change Behavior? Experimental Design



## Experimental Design: "Value Road"

- Nationwide pilot run by the Highway Administration
$\Rightarrow$ We are their economics analysis team
- 10k participants recruited across Israel b/w Jan 2020 and June 2021
- Each participant gets a GPS device installed in their car
$\Rightarrow$ "Monitoring" for 6 months $\mathrm{w} /$ no communication
$\Rightarrow$ "Active" for the next 12 months+
- Invited to download an app w/ usage info
- download distribution
- Initial budget 4500 NIS (~ \$1,300)
- Subtract per-km fee based on location + time
- Budget remainder paid out at license-renewal date
- payment distribution


## Did Prices Decrease Congested Driving? ATT on Total Price



Estimation Details

## Did Prices Affect the Intensive Margin? ATT on Price / Trip



[^0]
## Would This Affect Traffic? ATT on Total Price Across Trips



## Would This Affect Traffic? ATT on the \# of Trips



Who is Affected and How?

## Pre-treatment Correlations among "Value Road" Drivers



## Who Changed their Behavior? Estimation Strategy

"Sorted Effects Method" (Chernozhukov, Fernández-Val, and Luo, 2018)

1. Impute individual ATTs from control outcome model
2. Project individual ATTs onto driver characteristics
3. Rank predicted individual treatment effects by effect size
4. Compare the average of each characteristic among the top and bottom $20 \%$ of the TE distribution
5. Construct confidence intervals corrected for FWER per plot via Bayesian Bootstrap
$\Rightarrow$ reject zeros using step-down procedure in Romano and Wolf, 2005

## Treatment Effect Heterogeneity: Total Weekly Price



## Treatment Effect Heterogeneity: Total Weekly Price



## Treatment Effect Heterogeneity: Total Weekly Price

Socioeconomic Covariates


## Where is this coming from? TE heterogeneity for \# of Trips



## Where is this coming from? TE heterogeneity for Price/Trip



What might this mean for congestion?

Speed vs Density (exponentiated log-log-scale)


- Bernstein Polynomial Est.


## Fitting Speed vs. Density Relationships

- Why is this challenging?
- Speed and density are simultaneously determined
- Density $\downarrow \Rightarrow$ speed $\uparrow$, but. . .
- Speed $\uparrow \Rightarrow$ density $\uparrow$
- Staying on the highway is endogenous
- How do we deal with this?
- Non-parametric IV (NPIV) regression:
- Classic NPIV model (Newey and Powell, 2003):

$$
Y(x)=U \cdot h(x) \text { for arbitrary } h \text {, but } X \not \perp U \text {, only } U \perp Z
$$

- Estimate $h(x) \mathrm{w} /$ flexible, monotonic approx. in 1st +2 nd stage (Chetverikov and Wilhelm, 2017)
- IVs: distances ${ }^{-1}$ in speed and time of accidents from sensors (controlling for expected accident prevalence by time-of-day)


## What do our ATTs imply for highway speeds?

## - Today:

- Take ATT estimates for highway trips in our sample
- Re-weight ATTs by how nationally-representative each driver is
- Assume ATTs apply nationally, under ceteris-paribus
- Impute predicted change in speed under change in trips


## What do our ATTs imply for highway speeds?

- Today:
- Take ATT estimates for highway trips in our sample
- Re-weight ATTs by how nationally-representative each driver is
- Assume ATTs apply nationally, under ceteris-paribus
- Impute predicted change in speed under change in trips
- In the works:
- Estimate demand for travel choice, given price and travel time
- Predict equilibrium load + speed on each segment of highway


## What do our ATTs imply for highway speeds?

- Today:
- Take ATT estimates for highway trips in our sample
- Re-weight ATTs by how nationally-representative each driver is
- Assume ATTs apply nationally, under ceteris-paribus
- Impute predicted change in speed under change in trips
- In the works:
- Estimate demand for travel choice, given price and travel time
- Predict equilibrium load + speed on each segment of highway
- Next: Expand from the highway to the whole road network

What do our ATTs imply for highway speeds under ceteris paribus?



## Summing Up

- Evidence that usage-based pricing may induce $\downarrow$ in congested driving
- Most affected people tend to be:
- Heavy commuters
- More flexible
- With better public transit options
- Ceteris Paribus Extrapolation Exercise on the Ayalon highway
- Speed-Density relationship highly nonlinear at the tails
$\Rightarrow$ The most congested driving is at the tails
$\Rightarrow$ Potentially big gains possible
This is not taking into account equilibrium effects!
- More to come...

Thank You

## Appendix

## References

Rorusyak, Kirill, Xavier Jaravel, and Jann Spiess (2021). "Revisiting event study designs: Robust and efficient estimation". In: arXiv preprint arXiv:2108.12419.
Chernozhukov, Victor, Iván Fernández-Val, and Ye Luo (2018). "The sorted effects method: discovering heterogeneous effects beyond their averages". In: Econometrica 86.6, pp. 1911-1938.
Chetverikov, Denis and Daniel Wilhelm (2017). "Nonparametric instrumental variable estimation under monotonicity". In:
Econometrica 85.4, pp. 1303-1320.
Kreindler, Gabriel (2022). "Peak-hour road congestion pricing: Experimental evidence and equilibrium implications". In: Working paper.

戋 Martin, Leslie A and Sam Thornton (2017). "Can Road Charges Alleviate Congestion?" In: Available at SSRN 3055428.
Newey, Whitney K and James L Powell (2003). "Instrumental variable estimation of nonparametric models". In: Econometrica 71.5, pp. 1565-1578.
Romano, Joseph P, Azeem M Shaikh, and Michael Wolf (2010). "Hypothesis testing in econometrics". In: Annu. Rev. Econ. 2.1, pp. 75-104.
Romano, Joseph P and Michael Wolf (2005). "Stepwise multiple testing as formalized data snooping". In: Econometrica 73.4, pp. 1237-1282.
Rosaia, Nicola (2020). "Competing platforms and transport equilibrium: Evidence from New York City". In: Working paper.
回 Rubin, Donald B (1981). "The bayesian bootstrap". In: The annals of statistics, pp. 130-134.

## Motivation: traffic congestion is very costly in very many places

## THE MOST CONGESTED CITIES IN THE U.S.


(BASED ON HOURS \& MONEY LOST DUETO TRAFFIC ANNUALLY)

## Conceptual Framework: The Vickery Model

Consider a driver who...

- observes trip characteristics $X_{d}$
$\Rightarrow$ e.g. the weather, average driving conditions
- decides whether to take her trip by car (vs. an outside option)
- decides what time $t_{s}$ to start her trip


## Conceptual Framework: The Vickrey Model

$$
v\left(t_{s} ; X_{d}\right)=\alpha \cdot \mathbb{E}\left[\rho\left(t_{s} ; X_{d}\right)\right]+w_{h} \cdot t_{s}+w_{\ell} \cdot\left(t_{a}^{*}-\mathbb{E}\left[\tau\left(t_{s} ; X_{d}\right)\right]\right)
$$

where...

- $\mathbb{E}\left[\rho\left(t_{s} ; X_{d}\right)\right]$ : Expected trip price conditional on starting at $t_{s}$
- $\mathbb{E}\left[\tau\left(t_{s} ; X_{d}\right)\right]$ : Expected time of arrival conditional on starting at $t_{s}$
- $t_{a}^{*}$ : The driver's ideal time of arrival at her destination
- $w_{h}$ : Linear value of an additional minute at home
- $w_{\ell}$ : Linear value of not being late by an additional minute


## Conceptual Framework: Zooming out from Vickrey

$$
v\left(t_{s} ; X_{d}\right)=\alpha \cdot \mathbb{E}\left[\rho\left(t_{s} ; X_{d}\right)\right]+w_{h} \cdot t_{s}+w_{\ell} \cdot\left(t_{a}^{*}-\mathbb{E}\left[\tau\left(t_{s} ; X_{d}\right)\right]\right)
$$

- 'Congestion" Parameters:
- $\mathbb{E}\left[\rho\left(t_{s} ; X_{d}\right)\right]$ : Expected trip price
- $\mathbb{E}\left[\tau\left(t_{s} ; X_{d}\right)\right]$ : Expected time of arrival
- "Flexibility" Parameters:
- $w_{h}$ : Linear value of an additional minute at home
- $w_{\ell}$ : Linear value of not being late by an additional minute
- "Price sensitivity" Parameters:
- $\alpha$ : Price coefficient
- (Not modeled): Budget constraints, income effects, etc.


## Mapping the Venn-Diagram to "Value Road": 50-50 Splits



## Mapping the Venn-Diagram to "Value Road": 80-20 Splits



## Israeli Driving Statistics

לוח 2- מרחקי נסיעה ממוצעים של נסיעות שנוטרו ב 2007 וב 2018-19 לפי תקופת השבוע

| ק"מ |  |  |  |
| :---: | :---: | :---: | :---: |
| שיעור הגידול | 2018-19 | 2007 |  |
| 20.0\% | 21.1 | 17.6 | ימי א'-ה |
| 23.5\% | 20.5 | 16.6 | ימי ו' ו' וערבי חגר |
| 19.6\% | 23.2 | 19.4 | 'ימי שבת וֹת וחר |
| 20.3\% | 21.3 | 17.7 | ממוצע שבועי |
| 16.5\% | 12.0 | 10.3 | אורך חציוני (בשבוע) |

## Benchmarking Exercise: US Driving

The average US driver...

- Takes 2.5 trips per day ( $\mathbf{1 2 . 5}$ trips per work week)
- Drives 30 miles per day (~ $\mathbf{2 4 0} \mathbf{~ k m}$ per work week)
- Spends 1 hour driving per day (5 hours per work week)
- 26 minutes per 1-way commute nationwide
- 32 minutes per 1-way commute in Boston
- 35 minutes per 1-way commute in DC


## Distribution of App Download Times



## Distribution of Driver Payments

Projected rider payments up to June 5, 2021


## Pricing Table

|  | Hours | Metro | Sub-Metro | Periphery |
| :---: | :---: | :---: | :---: | :---: |
| Peak | Weekdays | 1.5 | 0.3 | 0 |
|  | 6:45-9:30 AM |  |  |  |
|  | 3:30-6:30 PM |  |  |  |
| Moderate | 9:30-3:30 PM | 0.1 | 0 | 0 |
|  | 6:30-8 PM |  |  |  |
| Low | 8PM - 6:45 AM | 0 | 0 | 0 |
|  | Weekends |  |  |  |
|  | All Hours | 0 | 0 | 0 |

Table 1: NIS per Km traveled

## Benchmarking Exercise: Pre-Treatment Driving Behavior

The median driver in our sample...

- Takes 14 trips per week
- Drives 156 Kilometers per week
- Spends 6 hours driving per week
- Pays 32 NIS per week


## Benchmarking Exercise: Pre-Treatment Driving Behavior

The median driver in our sample...

- Takes 14 trips per week
$\Rightarrow 65 \%$ coming to or from a metro area
- Drives 156 Kilometers per week ( 11 Km per trip)
$\Rightarrow 113 \mathrm{Km}$ on trips to or from a metro area
- Spends 6 hours driving per week ( 25 mins per trip)
$\Rightarrow 4$ hours on trips to or from a metro area
- Pays 32 NIS per week (2 NIS per trip)
$\Rightarrow 29$ NIS on trips to or from a metro area


## Benchmarking Exercise: Pre-Treatment Driving Behavior

The median driver in our sample...

- Takes 14 trips per week
$\Rightarrow 40 \%$ during "peak" hours
- Drives 156 Kilometers per week ( 11 Km per trip)
$\Rightarrow 57 \mathrm{Km}$ on trips during "peak" hours
- Spends 6 hours driving per week ( 25 mins per trip)
$\Rightarrow 3$ hours on trips during "peak" hours
- Pays 32 NIS per week (3 NIS per trip)
$\Rightarrow 29$ NIS on trips during "peak" hours


## Arrival Time Entropy: Examples I







Arrival Times

## Arrival Time Entropy: Examples II



Entropy $=3$




Arrival Times

## Did Prices Change Behavior? Estimation Strategy

- Event study assuming parallel trends on control potential outcomes

$$
\begin{aligned}
& \Longleftrightarrow \mathbb{E}\left[Y_{i, t}(0)-Y_{i, t-1}(0) \mid C_{i}\right]=\beta_{t}-\beta_{t-1} \\
& \Longleftrightarrow Y_{i, t}(0)=\alpha_{i}+\beta_{t}+\varepsilon_{i, t}, \quad \varepsilon_{i, t}:=Y_{i, t}(0)-\mathbb{E}\left[Y_{i, t}(0) \mid \alpha_{i}\right]
\end{aligned}
$$

- Estimand is Average Treatment Effect on Treated (ATT):

$$
\tau_{e}=\sum_{c=1}^{T} \sum_{t=1}^{T} \mathbb{1}\{t-c=e\} \mathbb{E}\left[\left(Y_{i, t}(c)-Y_{i, t}(0)\right) \mathbb{1}\left\{C_{i}=c\right\}\right]
$$

- Model-based imputation for unobserved post-treatment control potential outcomes (Borusyak, Jaravel, and Spiess, 2021)
- Confidence intervals corrected for FWER per plot via Bayesian Bootstrap (Romano, Shaikh, and Wolf, 2010; Rubin, 1981)
$\Rightarrow$ reject zeros using step-down procedure from Romano and Wolf, 2005


## Estimation Formula Notation

- $i$ : individual driver identifier
- $t$ : week of the year identifier (in absolute time)
- c: cohort-identifier (week of activation)
- $e$ : event time relative to activation $(e=t-c)$
- $Y_{i, t}(0)$ : potential outcome for driver $i$ in week $t$ under no treatment
- $Y_{i, t}(c)$ : potential outcome for driver $i$ in week $t$ if they were first treated in week c
- $\alpha_{i}$ : individual driver fixed effect under the parallel trends imputation model
- $\beta_{t}$ : week of the year fixed effect under the parallel trends imputation model


## How did Drivers Adjust? ATT on \# Trips in SD Units

Weekly \# Trips


## How did Drivers Adjust? ATT on Total \# Trips



## How did Drivers Adjust? ATT on \# Cross-City Trips



[^1]
## Would This Affect Traffic? ATT on Total Price Across Trips

Weekly Price


## Would This Affect Traffic? ATT on Price per Trip Across Trips



## Would This Affect Traffic? ATT on Price per Trip Across Trips



## Would This Affect Traffic? ATT on Price per Km Across Trips



## Would This Affect Traffic? ATT on Price per Km Across Trips

Price / Km


## Treatment Effect Heterogeneity: Price per Km

Flexibility Covariates


## Treatment Effect Heterogeneity: Price per Km

Socioeconomic Covariates


## TE Heterogeneity: Time to Peak on Common Trips

Flexibility Covariates


## TE Heterogeneity: Time to Peak on Common Trips

Congestion Covariates


## TE Heterogeneity: Time to Peak on Metro

Congestion Covariates


## TE Heterogeneity: \# Metro Trips

Congestion Covariates


## TE Heterogeneity: \# Metro Trips

Flexibility Covariates


Back

## TE Heterogeneity: \# Metro Trips

Socioeconomic Covariates


## TE Heterogeneity: Home Census Block vs Survey Demos







[^0]:    - Estimation Details

[^1]:    . Back

