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Motivation: traffic congestion is very costly

More
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Motivation: Gov’ts are adopting congestion pricing policies
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Motivation: Congestion pricing seems like a good idea
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Motivation: But it raises distributional concerns
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Motivation: Does congestion pricing even work?

• Zone-based prices may backfire

⇒ Travel time in London nearly back to pre-charging levels (TfL)
⇒ Fixed entry fees would encourage idling in NYC (Rosaia, 2020)

• Price elasticities might be too small to shift behavior
⇒ Experimental evidence from Bangalore (Kreindler, 2022)

⇒ Experimental evidence from Australia (Martin and Thornton, 2017)

• Distributional effects may bind
• Willingness to pay is neither flat nor proportional to income

(Bento, Roth & Waxman (2020))
• Pigouvian tolling would hurt low-income drivers (Hall 2020)
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Can Congestion Prices Target the Right People? Model

people who contribute
to congestion

e.g. rush hour commuters

people who
are flexible

e.g. lower cost of
being late to work

people who are
price sensitive
e.g. middle class
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The “Value Road" Pilot



The “Value Road" Pilot
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Experimental Design: "Value Road"

• Nationwide pilot run by the Highway Administration

⇒ We are their economics analysis team

• 10k participants recruited across Israel b/w Jan 2020 and June 2021

• Each participant gets a GPS device installed in their car
⇒ “Monitoring" for 6 months w/ no communication

⇒ “Active" for the next 12 months+

• Invited to download an app w/ usage info

• Initial budget 4500 NIS (∼ $1,300)

• Subtract per-km fee based on location + time

• Budget remainder paid out at license-renewal date
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Did Prices Change Behavior? Experimental Design
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Experimental Design: "Value Road"

• Nationwide pilot run by the Highway Administration

⇒ We are their economics analysis team

• 10k participants recruited across Israel b/w Jan 2020 and June 2021

• Each participant gets a GPS device installed in their car
⇒ “Monitoring" for 6 months w/ no communication

⇒ “Active" for the next 12 months+

• Invited to download an app w/ usage info download distribution

• Initial budget 4500 NIS (∼ $1,300)

• Subtract per-km fee based on location + time prices map

• Budget remainder paid out at license-renewal date
payment distribution
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Did Prices Decrease Congested Driving? ATT on Total Price

Estimation Details
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Did Prices Affect the Intensive Margin? ATT on Price / Trip

Estimation Details
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Would This Affect Traffic? ATT on Total Price Across Trips

SD Units Price per Trip Price per Km

13



Would This Affect Traffic? ATT on the # of Trips
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Who is Affected and How?



Pre-treatment Correlations among “Value Road" Drivers
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Who Changed their Behavior? Estimation Strategy

“Sorted Effects Method” (Chernozhukov, Fernández-Val, and Luo, 2018)

1. Impute individual ATTs from control outcome model

2. Project individual ATTs onto driver characteristics

3. Rank predicted individual treatment effects by effect size

4. Compare the average of each characteristic among the top and
bottom 20% of the TE distribution

5. Construct confidence intervals corrected for FWER per plot via
Bayesian Bootstrap
⇒ reject zeros using step-down procedure in Romano and Wolf, 2005
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Treatment Effect Heterogeneity: Total Weekly Price
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Treatment Effect Heterogeneity: Total Weekly Price

18



Treatment Effect Heterogeneity: Total Weekly Price
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Where is this coming from? TE heterogeneity for # of Trips

20



Where is this coming from? TE heterogeneity for Price/Trip
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What might this mean for
congestion?



Perspective from Ayalon NB to Tel Aviv Sensor Location
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Fitting Speed vs. Density Relationships

• Why is this challenging?
• Speed and density are simultaneously determined

• Density ↓ ⇒ speed ↑, but. . .
• Speed ↑ ⇒ density ↑

• Staying on the highway is endogenous

• How do we deal with this?
• Non-parametric IV (NPIV) regression:

• Classic NPIV model (Newey and Powell, 2003):

Y (x)=U ·h(x) for arbitrary h, but X ̸⊥U, only U ⊥Z

• Estimate h(x) w/ flexible, monotonic approx. in 1st + 2nd stage
(Chetverikov and Wilhelm, 2017)

• IVs: distances−1 in speed and time of accidents from sensors
(controlling for expected accident prevalence by time-of-day)

Sensor Location
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What do our ATTs imply for highway speeds?

• Today:
• Take ATT estimates for highway trips in our sample

• Re-weight ATTs by how nationally-representative each driver is

• Assume ATTs apply nationally, under ceteris-paribus

• Impute predicted change in speed under change in trips

• In the works:
• Estimate demand for travel choice, given price and travel time

• Predict equilibrium load + speed on each segment of highway

• Next: Expand from the highway to the whole road network
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What do our ATTs imply for highway speeds under ceteris
paribus?
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Summing Up

• Evidence that usage-based pricing may induce ↓ in congested driving

• Most affected people tend to be:

• Heavy commuters
• More flexible
• With better public transit options

• Ceteris Paribus Extrapolation Exercise on the Ayalon highway
• Speed-Density relationship highly nonlinear at the tails
⇒ The most congested driving is at the tails
⇒ Potentially big gains possible
" This is not taking into account equilibrium effects!

• More to come. . .
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Thank You
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Motivation: traffic congestion is very costly in very many
places

Back



Conceptual Framework: The Vickery Model Back

Consider a driver who. . .

• observes trip characteristics Xd

⇒ e.g. the weather, average driving conditions

• decides whether to take her trip by car (vs. an outside option)

• decides what time ts to start her trip



Conceptual Framework: The Vickrey Model Back

v(ts ;Xd )=α ·E[ρ(ts ;Xd )]+wh · ts +wℓ · (t∗a −E[τ(ts ;Xd )])

where...

• E[ρ(ts ;Xd )] : Expected trip price conditional on starting at ts

• E[τ(ts ;Xd )] : Expected time of arrival conditional on starting at ts

• t∗a : The driver’s ideal time of arrival at her destination

• wh : Linear value of an additional minute at home

• wℓ : Linear value of not being late by an additional minute



Conceptual Framework: Zooming out from Vickrey Back

v(ts ;Xd )=α ·E[ρ(ts ;Xd )]+wh · ts +wℓ · (t∗a −E[τ(ts ;Xd )])

• ‘Congestion" Parameters:
• E[ρ(ts ;Xd )] : Expected trip price
• E[τ(ts ;Xd )] : Expected time of arrival

• “Flexibility" Parameters:
• wh : Linear value of an additional minute at home
• wℓ : Linear value of not being late by an additional minute

• “Price sensitivity" Parameters:
• α : Price coefficient
• (Not modeled): Budget constraints, income effects, etc.



Mapping the Venn-Diagram to “Value Road": 50-50 Splits
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Mapping the Venn-Diagram to “Value Road": 80-20 Splits
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Israeli Driving Statistics
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Benchmarking Exercise: US Driving

The average US driver. . .

• Takes 2.5 trips per day (12.5 trips per work week)

• Drives 30 miles per day (∼ 240 km per work week)

• Spends 1 hour driving per day (5 hours per work week)

• 26 minutes per 1-way commute nationwide

• 32 minutes per 1-way commute in Boston

• 35 minutes per 1-way commute in DC
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Distribution of App Download Times
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Distribution of Driver Payments
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Pricing Table

Hours Metro Sub-Metro Periphery

Weekdays
Peak 6:45 - 9:30 AM 1.5 0.3 0

3:30 - 6:30 PM

Moderate 9:30 - 3:30 PM 0.1 0 0
6:30 - 8 PM

Low 8PM - 6:45 AM 0 0 0

Weekends
All Hours 0 0 0

Table 1: NIS per Km traveled

Back



Benchmarking Exercise: Pre-Treatment Driving Behavior

The median driver in our sample. . .

• Takes 14 trips per week

• Drives 156 Kilometers per week

• Spends 6 hours driving per week

• Pays 32 NIS per week



Benchmarking Exercise: Pre-Treatment Driving Behavior

The median driver in our sample. . .

• Takes 14 trips per week

⇒ 65% coming to or from a metro area

• Drives 156 Kilometers per week (11 Km per trip)

⇒ 113 Km on trips to or from a metro area

• Spends 6 hours driving per week (25 mins per trip)

⇒ 4 hours on trips to or from a metro area

• Pays 32 NIS per week (2 NIS per trip)

⇒ 29 NIS on trips to or from a metro area



Benchmarking Exercise: Pre-Treatment Driving Behavior

The median driver in our sample. . .

• Takes 14 trips per week

⇒ 40% during “peak" hours

• Drives 156 Kilometers per week (11 Km per trip)

⇒ 57 Km on trips during “peak" hours

• Spends 6 hours driving per week (25 mins per trip)

⇒ 3 hours on trips during “peak" hours

• Pays 32 NIS per week (3 NIS per trip)

⇒ 29 NIS on trips during “peak" hours



Arrival Time Entropy: Examples I
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Arrival Time Entropy: Examples II
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Did Prices Change Behavior? Estimation Strategy

• Event study assuming parallel trends on control potential outcomes

⇐⇒ E[Yi ,t(0)−Yi ,t−1(0) | Ci ]=βt −βt−1

⇐⇒ Yi ,t(0)=αi +βt +εi ,t , εi ,t :=Yi ,t(0)−E[Yi ,t(0) | αi ]

• Estimand is Average Treatment Effect on Treated (ATT):

τe =
T∑
c=1

T∑
t=1

1{t−c = e}E [(Yi ,t(c)−Yi ,t(0))1{Ci = c}]

• Model-based imputation for unobserved post-treatment control
potential outcomes (Borusyak, Jaravel, and Spiess, 2021)

• Confidence intervals corrected for FWER per plot via Bayesian
Bootstrap (Romano, Shaikh, and Wolf, 2010; Rubin, 1981)
⇒ reject zeros using step-down procedure from Romano and Wolf, 2005
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Estimation Formula Notation

• i : individual driver identifier

• t : week of the year identifier (in absolute time)

• c : cohort-identifier (week of activation)

• e : event time relative to activation (e = t−c)

• Yi ,t(0) : potential outcome for driver i in week t under no treatment

• Yi ,t(c) : potential outcome for driver i in week t if they were first
treated in week c

• αi : individual driver fixed effect under the parallel trends
imputation model

• βt : week of the year fixed effect under the parallel trends
imputation model
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How did Drivers Adjust? ATT on # Trips in SD Units
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How did Drivers Adjust? ATT on Total # Trips
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How did Drivers Adjust? ATT on # Cross-City Trips
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Would This Affect Traffic? ATT on Total Price Across Trips
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Would This Affect Traffic? ATT on Price per Trip Across
Trips
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Would This Affect Traffic? ATT on Price per Trip Across
Trips
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Would This Affect Traffic? ATT on Price per Km Across Trips
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Would This Affect Traffic? ATT on Price per Km Across Trips
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Treatment Effect Heterogeneity: Price per Km
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Treatment Effect Heterogeneity: Price per Km
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TE Heterogeneity: Time to Peak on Common Trips
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TE Heterogeneity: Time to Peak on Common Trips
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TE Heterogeneity: Time to Peak on Metro
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TE Heterogeneity: # Metro Trips
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TE Heterogeneity: # Metro Trips
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TE Heterogeneity: # Metro Trips
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TE Heterogeneity: Home Census Block vs Survey Demos
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Highway Sensor Locations: Zoomed Out Back



Highway Sensor Locations: Zoomed In Back



Perspective from Ayalon South from Tel Aviv Back to NB
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