Robust Bounds for Welfare Analysis

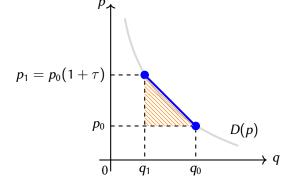
Zi Yang KangShoshana VassermanStanford GSBStanford GSB

- 1. A policy (*e.g.*, tax/subsidy) was implemented.
- 2. Using prices and quantities before and after, estimate demand.
- 3. Impute the change in welfare + compare to costs/revenues.

- 1. A policy (*e.g.*, tax/subsidy) was implemented.
- 2. Using prices and quantities before and after, estimate demand.
- 3. Impute the change in welfare + compare to costs/revenues.
- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.

- 1. A policy (*e.g.*, tax/subsidy) was implemented.
- 2. Using prices and quantities before and after, estimate demand.
- 3. Impute the change in welfare + compare to costs/revenues.
- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.
 - ightarrow Functional forms (e.g., CES or linear demand) are often assumed for convenience.

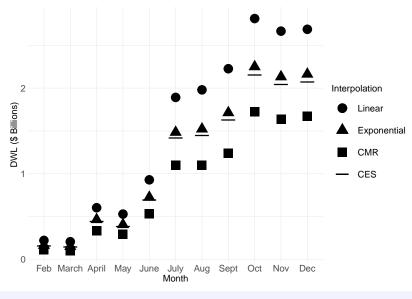
Example: evaluating the deadweight loss of the Trump tariffs



- Amiti, Redding and Weinstein (2019)
- Setting: 2018 trade war involved tariffs as high as 30-50%.
- Question: What was the DWL?
- Approach: Compare monthly prices & quantities by item in 2017 vs. 2018.
- *q* ► Method: Approximate D(p) with a linear curve; integrate under the curve.

Introduction

Bounding the DWL across countries and products



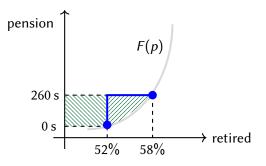
Introduction

Basic model

Extensions Discus

- 1. A policy (*e.g.*, tax/subsidy) was implemented.
- 2. Using prices and quantities before and after, estimate demand.
- 3. Impute the change in welfare + compare to costs/revenues.
- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.
 - Functional forms (*e.g.*, CES or linear demand) are often assumed for convenience.
 - $\rightarrow~$ Conservative bounds in lieu of assumptions are often extreme.

Example: WTP of 1911 UK pension recipients



- Giesecke and Jäger (2021)
- Setting: Pensions created for poor 70+ year olds in 1911.
- Question: What is the MVPF of the pension policy?
- Approach: MVPF = (WTP for not working) / (cost of pension).
- Method: Compute % marginal workers via RD; assume marginal workers' WTP = 0.

- 1. A policy (*e.g.*, tax/subsidy) was implemented.
- 2. Using prices and quantities before and after, estimate demand.
- 3. Impute the change in welfare + compare to costs/revenues.
- Measuring welfare requires taking a stance on what the demand curve looks like at unobserved points.
 - Functional forms (e.g., CES or linear demand) are often assumed for convenience.
 - Conservative bounds in lieu of assumptions are often extreme.
 - \sim Is there a more principled way to engage with assumptions and evaluate welfare?

This paper

Instead of interpolating to get a welfare estimate, we establish welfare bounds.

- These bounds are **robust**: they give the *best-case* and *worst-case* welfare estimates that are consistent with a set of pre-specified economic assumptions.
- These bounds are also **simple**: we can compute them in closed form.

Whom is this for?

"Economists have made remarkable progress over the last several decades in developing empirical techniques that provide compelling **evidence of causal effects**—the socalled **"credibility revolution"** in empirical work...

But while it is interesting and important to know what the effects of a policy are, we are often also interested in a **normative question** as well: Is the policy a **good** idea or a **bad** idea?

... What is the welfare impact of the policy?"

-Finkelstein and Hendren (2020)

This is a tool for empirical microeconomists

- Our bounds apply directly to settings with:
 - (i) exogenous policy shocks/experiments/quasi-experiments;
 - (ii) measurements of "price" and "quantity," before and after the policy shock; and
 - (iii) interest in effects on consumer surplus (or other welfare measures).

This is a tool for empirical microeconomists

- Our bounds apply directly to settings with:
 - (i) exogenous policy shocks/experiments/quasi-experiments;
 - (ii) measurements of "price" and "quantity," before and after the policy shock; and
 - (iii) interest in effects on consumer surplus (or other welfare measures).
- We show how our bounds can be applied to a variety of settings across literatures:
 - #1. deadweight loss of import tariffs
 #2. welfare impact of energy subsidies
 #3. willingness to pay for the Old-Age Pension Act
 #4. marginal excess burden of income taxation
 (Feldstein, 1999)

This is an application of information design for econometrics

Applies ideas from information design to interpret econometrics:

- Key idea: maximize/minimize welfare over the space of *feasible* demand curves.
- Main result: the max/min bounds on welfare are attained by simple one-piece and two-piece interpolations for a number of (arguably) useful restrictions on demand.

This is an application of information design for econometrics

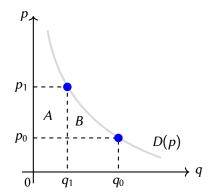
Applies ideas from information design to interpret econometrics:

- Key idea: maximize/minimize welfare over the space of *feasible* demand curves.
- Main result: the max/min bounds on welfare are attained by simple one-piece and two-piece interpolations for a number of (arguably) useful restrictions on demand.
- Bonus: our bounds shed light on the implications of commonly used demand curves.
 - \sim *E.g.*, CES interpolation yields the *smallest* welfare estimate among all possible interpolations, assuming that the demand curve satisfies Marshall's second law.

Basic model

An analyst observes 2 points on a demand curve: (p_0, q_0) and (p_1, q_1) .

Question. What is the change in consumer surplus from (p_0, q_0) to (p_1, q_1) ?

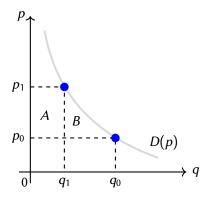


- Main challenge: D(p) isn't observed.
- With D(p), change in CS is equal to

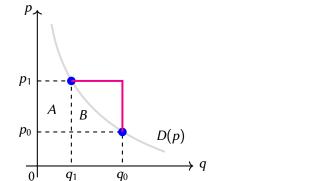
$$\operatorname{area}_{=(p_1-p_0)q_1} + \operatorname{area}_{B} B = \int_{p_0}^{p_1} D(p) \, \mathrm{d}p.$$

Equivalently, we want to *bound* area *B*.

Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).



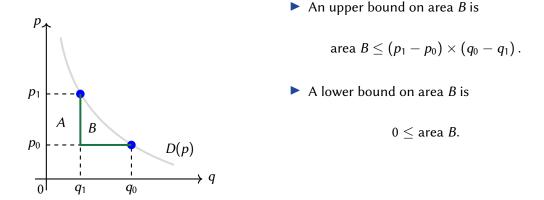
Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).



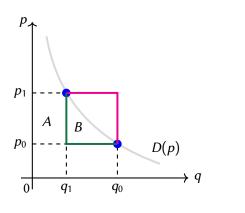
An upper bound on area B is

area
$$B \leq (p_1 - p_0) imes (q_0 - q_1)$$
 .

Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).



Using only the fact that the demand curve is decreasing, the analyst can establish bounds on the change in welfare (Fogel, 1964; Varian, 1985).



- ► An upper bound on area *B* is
 - area $B \leq (p_1 p_0) imes (q_0 q_1)$.
- A lower bound on area *B* is

 $0 \leq \text{area } B.$

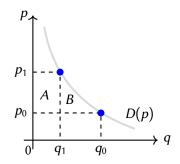
► These bounds are attained only when elasticities are equal to 0 or -∞.

Basic model

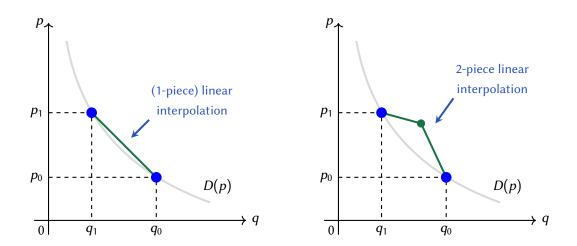
An analyst observes 2 points on a demand curve: (p_0, q_0) and (p_1, q_1) .

We assume that elasticities between (p_0, q_0) and (p_1, q_1) lie in the interval $[\underline{\varepsilon}, \overline{\varepsilon}] \subset \mathbb{R}_{\leq 0}$.

Question. What is the change in consumer surplus from (p_0, q_0) to (p_1, q_1) ?



Defining 1-piece and 2-piece interpolations

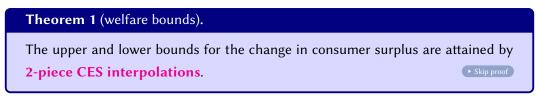


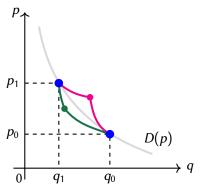
Introduction

Basic model

Extensions

Welfare bounds for basic model





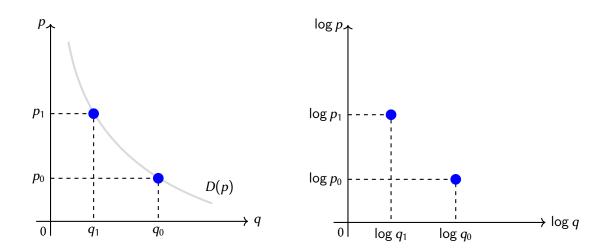
Welfare bounds for basic model

Theorem 1 (welfare bounds). The upper and lower bounds for the change in consumer surplus are attained by 2-piece CES interpolations. *p*_↑ p_∧ $\overline{\varepsilon} \rightarrow 0$, p_1 $\varepsilon \to -\infty$ p_1 p_0 p_0 D(p)D(p) $\rightarrow q$ $\rightarrow q$ 0 q_1 0 q_1 q_0 q_0

Introduction

Extensions

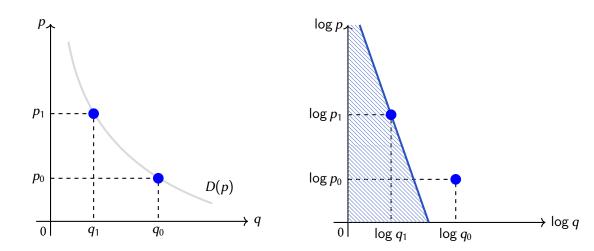
Discussion



Introduction

Basic model

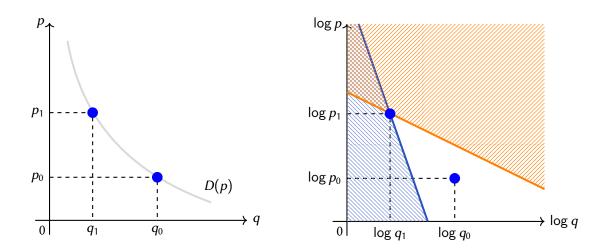
Extensions



Introduction

Basic model

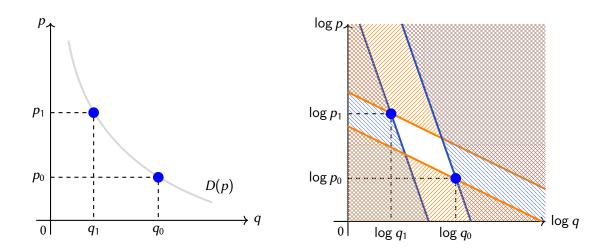
Extensions



Introduction

Basic model

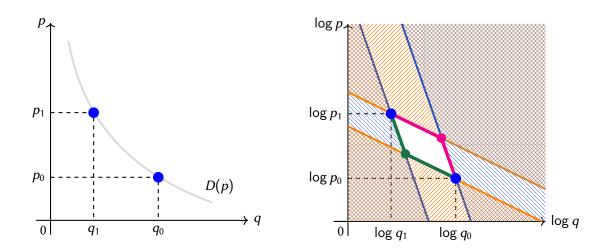
Extensions



Introduction

Basic model

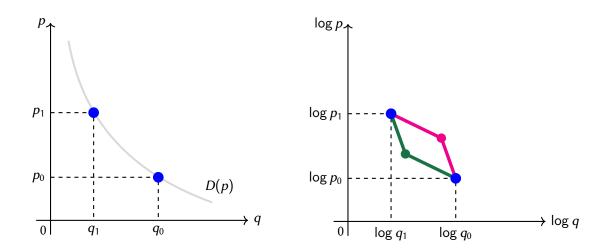
Extensions



Introduction

Basic model

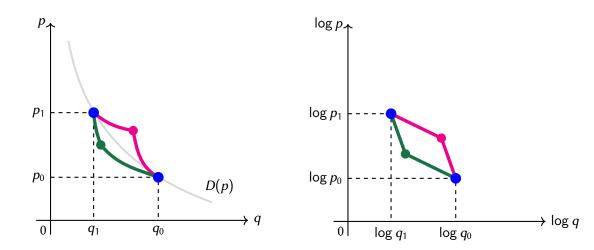
Extensions



Introduction

Basic model

Extensions



Introduction

Basic model

Extensions

Welfare bounds for basic model

Theorem 1 (welfare bounds).

The upper and lower bounds for the change in consumer surplus are attained by **2-piece CES interpolations**.

These bounds can be easily computed.

- Tighter range of elasticities, $[\underline{\varepsilon}, \overline{\varepsilon}] \implies$ tighter bounds on consumer surplus.
- Related literature: "sufficient statistics" approach (Chetty, 2009; Kleven, 2021) maps from *local* elasticity estimates to *local* welfare estimates.

 \sim Our approach maps from *global* elasticity bounds to *global* welfare bounds.

Choosing elasticity bands

- Question. What is a reasonable elasticity band?
 - (a) Combine estimates from the literature.
 - \sim E.g., "estimates of short run gasoline elasticities are between -0.2 and -0.4."
 - (b) Extrapolate from local estimates.
 - → E.g., partial ID of treatment responses (Manski, 1997).
 - (c) Draw a (symmetric) band around the *average* elasticity.

$$\underline{\varepsilon} \leq rac{\log q_1 - \log q_0}{\log p_1 - \log p_0} \leq \overline{\varepsilon}.$$

Discussion of basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1 Both points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice (e.g., counterfactuals), the analyst might observe p_0 , p_1 , and q_0 , but not q_1 .

Discussion of basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1 Both points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice (e.g., counterfactuals), the analyst might observe p_0 , p_1 , and q_0 , but not q_1 .

2) No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.

Discussion of basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1 Both points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice (e.g., counterfactuals), the analyst might observe p_0 , p_1 , and q_0 , but not q_1 .

2 No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.

3 Only two points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice, the analyst might observe more points on the demand curve.

Discussion of basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1 Both points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice (e.g., counterfactuals), the analyst might observe p_0 , p_1 , and q_0 , but not q_1 .

2 No assumption is made about the curvature of the demand curve.

In practice, the analyst might make assumptions about demand curvature.

3 Only two points (p_0, q_0) and (p_1, q_1) on the demand curve are observed.

In practice, the analyst might observe more points on the demand curve.

4 The points (p_0, q_0) and (p_1, q_1) on the demand curve are observed precisely.

In practice, the analyst might be limited by sampling error.

Extensions to basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1 In practice (e.g., counterfactuals), the analyst might observe p_0 , p_1 , and q_0 , but not q_1 . We show how to **extrapolate** from fewer observations.

2 In practice, the analyst might make assumptions about demand curvature.

 \implies We show how **demand curvature** assumptions lead to tighter bounds.

3 In practice, the analyst might observe more points on the demand curve.

 \implies We show how to **interpolate** with more observations.

4 In practice, the analyst might be limited by sampling error.

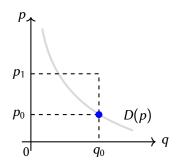
 \implies We show how to incorporate **sampling error** into welfare bounds.

1 Extrapolating from less data: model

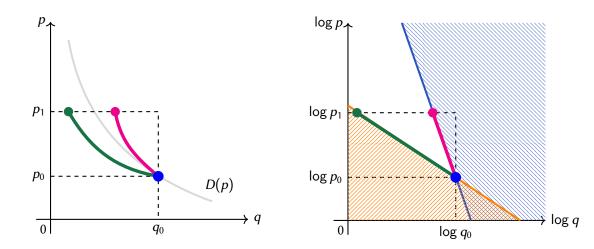
An analyst observes **1 point** on a demand curve: (p_0, q_0) ; p_1 is given.

We assume that elasticities between p_0 and p_1 lie in the interval $[\underline{\varepsilon}, \overline{\varepsilon}] \subset \mathbb{R}_{\leq 0}$.

Question. What is the change in consumer surplus from p_0 to p_1 ?



2) Extrapolating from less data: geometric intuition



Introduction

Basic model

Extensions

What is the welfare impact of CARE gas subsidies?

QUALIFYING CUSTOMERS CAN RECEIVE A 20-35% UTILITY BILL DISCOUNT.

CALL PG&E AT (866) 743-2273 TO ENROLL.

CARE Program:

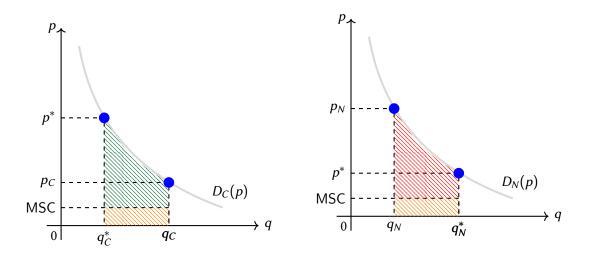
- Low income: 20% discount on gas
 - \rightsquigarrow Gas usage \uparrow
 - → Consumer surplus ↑
 - \rightsquigarrow Climate impact \downarrow
- - \rightsquigarrow Gas usage \downarrow
 - \sim Consumer surplus \downarrow
 - \rightsquigarrow Climate impact \uparrow
- Administrative cost: \$7M

Introduction

Basic mode

Extensions

Bounding counterfactual welfare from uniform pricing



Introduction

Basic model

Extensions

What is the welfare impact of CARE gas subsidies?

QUALIFYING CUSTOMERS CAN RECEIVE A 20-35% UTILITY BILL DISCOUNT.

CALL PG&E AT (866) 743-2273 TO ENROLL.

CARE Program:

- Low income: 20% discount on gas
 - \rightsquigarrow Gas usage \uparrow
 - \rightsquigarrow Consumer surplus \uparrow
 - \sim Climate impact \downarrow
- - \rightsquigarrow Gas usage \downarrow
 - → Consumer surplus ↓
 - \rightsquigarrow Climate impact \uparrow
- Administrative cost: \$7M

Question: Is CARE net welfare improving?

Introduction

asic model

Extensions

Empirical strategy:

- Randomly nudge eligible households to sign up for CARE.
- Compute LATE based on gas usage with and without CARE (using nudges as an IV).
- Interpret the LATE as an elasticity:
- \sim How much does gas usage change given a 20% discount in unit price?

Empirical strategy:

- Randomly nudge eligible households to sign up for CARE.
- Compute LATE based on gas usage with and without CARE (using nudges as an IV).
- Interpret the LATE as an elasticity:
- \sim How much does gas usage change given a 20% discount in unit price?

Modeling assumptions:

- The CARE program operates under a fixed budget.
- \sim The counterfactual "uniform" price is pinned down by observed quantities

$$N_n(P_n-P^*)Q_n=N_c(P^*-P_c)Q_c+A.$$

- Consumer demand is linear.

Elasticity estimates:

- Estimated CARE elasticity of -0.35.
- Assume non-CARE elasticity is -0.14 (Auffhammer and Rubin, 2018).

Welfare estimates:

- **CARE:** + \$5.3M
- **Non-CARE:** \$3.1M
- Admin Costs: \$7.0M

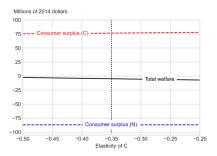
Net: - \$4.8M

Elasticity estimates:

- Estimated CARE elasticity of -0.35.
- Assume non-CARE elasticity is -0.14 (Auffhammer and Rubin, 2018).

Welfare estimates:

CARE: + \$5.3M Non-CARE: - \$3.1M Admin Costs: - \$7.0M

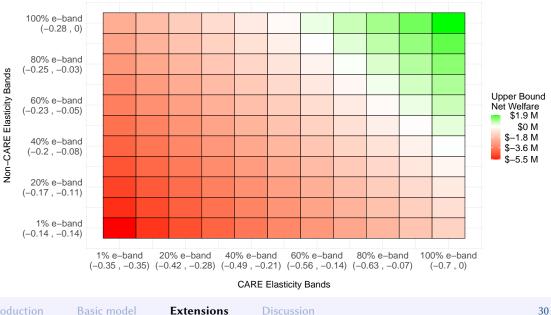


Introduction

Basic model

Extensions

How robust is the negative welfare result?



Discussion

Why might we expect the welfare results to flip?

- **#1.** Before imposing any assumptions, we can test the conservative (box) bounds.
 - $\rightsquigarrow\,$ They are positive! Something must give.
- **#2.** We "observe" p_1, q_1, ϵ_1 and p_0 but not q_0 or ϵ_0 .
 - $\rightsquigarrow~$ Our bounds account for uncertainty in both.
- #3. Our bounds are "adversarial".
 - \rightsquigarrow They consider *all* feasible demand curves.
 - \rightsquigarrow They default to joint uncertainty in ϵ_C and ϵ_N .

Discussion

Why might we expect the welfare results to flip?

- **#1.** Before imposing any assumptions, we can test the conservative (box) bounds.
- **#2.** We "observe" p_0, q_0, ε_0 and p_1 but not q_1 or ε_1 .
- **#3.** Our bounds are "adversarial."

So, how do we interpret these results?

- $\rightsquigarrow\,$ The Hahn and Metcalfe conclusion is pretty robust.
- \sim In fact, uncertainty in the non-CARE elasticity is not enough to break their result.

Discussion

Why might we expect the welfare results to flip?

- **#1.** Before imposing any assumptions, we can test the conservative (box) bounds.
- **#2.** We "observe" p_0, q_0, ε_0 and p_1 but not q_1 or ε_1 .
- **#3.** Our bounds are "adversarial."

So, how do we interpret these results?

- $\rightsquigarrow~$ The Hahn and Metcalfe conclusion is pretty robust.
- \sim In fact, uncertainty in the non-CARE elasticity is not enough to break their result.
- ightarrow But this might not be the case if the administrative cost had been lower... $lacksymbol{ ext{pressure}}$

Extensions to basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1 In practice (e.g., counterfactuals), the analyst might observe p_0 , p_1 , and q_0 , but not q_1 . \implies We show how to **extrapolate** from fewer observations.

2 In practice, the analyst might make assumptions about demand curvature.

 \implies We show how **demand curvature** assumptions lead to tighter bounds.

3 In practice, the analyst might observe more points on the demand curve.

 \implies We show how to **interpolate** with more observations.

4 In practice, the analyst might be limited by sampling error.

 \implies We show how to incorporate **sampling error** into welfare bounds.

1 Assumptions on demand curvature

"Notice that **these results depend on the fact** that the *PP* curve slopes upward, which in turn depends on the assumption that the **elasticity of demand falls with** *c*.

This assumption, which might alternatively be stated as an assumption that the elasticity of demand rises when the price of a good is increased, **seems plausible**.

In any case, it seems to be **necessary** if this model is to yield reasonable results, and I make the assumption without apology."

-Krugman (1979)

1 Assumptions on demand curvature

Many models across different fields impose additional assumptions on demand:

(A1) Decreasing elasticity, or "Marshall's second law." (Marshall, 1890; Krugman, 1979)
(A2) Decreasing marginal revenue. (Myerson, 1981; Bulow and Roberts, 1989)
(A3) Log-concave demand. (Caplin and Nalebuff, 1991a; Bagnoli and Bergstrom, 2005)
(A4) Concave demand. (Rosen, 1965; Szidarovszky and Yakowitz, 1977; Caplin and Nalebuff, 1991a)
(A5) ρ-concave demand that generalizes (A3) and (A4). (Caplin and Nalebuff, 1991a,b)

We call these "concave-like assumptions" on demand.

Introduction

Extensions

1 Assumptions on demand curvature

Many models across different fields impose additional assumptions on demand:

(A6) Convex demand. (Svizzero, 1997; Aguirre, Cowan and Vickers, 2010; Tsitsiklis and Xu, 2014)
(A7) Log-convex demand. (Caplin and Nalebuff, 1991b; Aguirre, Cowan and Vickers, 2010)

(A8) ρ -convex demand that generalizes (A6) and (A7). (Caplin and Nalebuff, 1991a,b)

We call these "convex-like assumptions" on demand.

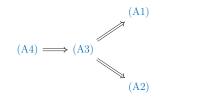
Relationships between curvature assumptions

Concave-like assumptions

Convex-like assumptions

- (A1) Decreasing elasticity
- (A2) Decreasing MR
- (A3) Log-concave demand
- (A4) Concave demand
- (A5) ρ -concave demand

- (A6) Convex demand
- (A7) Log-convex demand
- (A8) ρ -convex demand



 $(A7) \Longrightarrow (A6).$

Extensions

Assumptions on demand curvature: welfare bounds

Theorem 2a. (concave-like assumptions).

The **lower** bound for the change in consumer surplus are attained by:

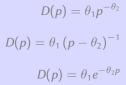
(A1) decreasing elasticity: a CES interpolation;

(A2) decreasing MR: a constant MR interpolation;

(A3) log-concave demand: an *exponential* interpolation;

(A4) concave demand: a linear interpolation;

(A5) ρ -concave demand: a ρ -linear interpolation.



 $D(p) = \theta_1 - \theta_2 p$

 $D(p) = [1 + \rho (\theta_1 - \theta_2 p)]^{1/\rho}$

Extensions

Assumptions on demand curvature: welfare bounds

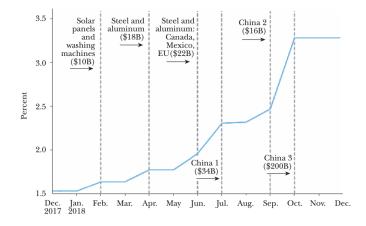
Theorem 2b. (convex-like assumptions).

The **upper** bound for the change in consumer surplus are attained by:

(Ab) convex demand: a linear interpolation; $D(p) = \theta_1 - \theta_2 p$ (A7) log-convex demand: an exponential interpolation; $D(p) = \theta_1 e^{-\theta_2 p}$ (A8) ρ -convex demand: a ρ -linear interpolation. $D(p) = [1 + \rho (\theta_1 - \theta_2 p)]^{1/\rho}$

Example: evaluating the deadweight loss of the Trump tariffs

Average Tariff Rates



Source: Amiti, Redding and Weinstein (2019)

Introduction

Basic model

Extensions

Example: evaluating the deadweight loss of the Trump tariffs

169 💭

How Many Tariff Studies Are Enough?

The trade war hits consumers and exports, two more papers say.

By The Editorial Board

Jan. 20, 2020 4:39 pm ET

🖶 PRINT 🔥 TEXT

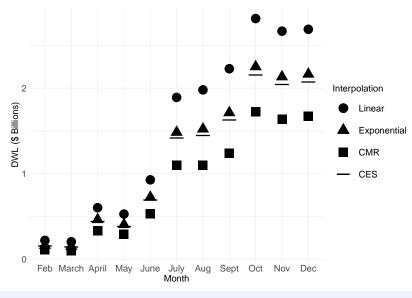
Source: WSJ Editorial Board

Introduction

Basic model

Extensions

Bounding the tariff DWL across countries and products



Introduction

Basic model

Extensions Discussion

1) Assumptions on demand curvature: geometric intuition

Theorem 2a. (concave-like assumptions).

The **lower** bound for the change in consumer surplus are attained by:

(A1) decreasing elasticity: a CES interpolation.

 $D(p) = \theta_1 p^{-\theta_2}$

Introduction

Step #1: change of variables

Variable change:

$$\eta(\pi) = -\frac{e^{\pi}D'(e^{\pi})}{D(e^{\pi})} \quad \text{where } \pi = \log p \implies D(p) = q_0 \exp\left[-\int_{\log p_0}^{\log p} \eta(\pi) \, \mathrm{d}\pi\right].$$

Introduction

Step #1: change of variables

Variable change:

$$\eta(\pi) = -\frac{e^{\pi}D'(e^{\pi})}{D(e^{\pi})} \quad \text{where } \pi = \log p \implies D(p) = q_0 \exp\left[-\int_{\log p_0}^{\log p} \eta(\pi) \, \mathrm{d}\pi\right].$$

Constraint (on the mean of η):

$$\mathcal{E} = \left\{\eta \text{ is increasing s.t. } \int_{\log p_0}^{\log p_1} \eta(\pi) \ \mathrm{d}\pi = \log\left(rac{q_0}{q_1}
ight)
ight\}.$$

Introduction Basic model Extensions Discussion

Step #1: change of variables

Variable change:

$$\eta(\pi) = -\frac{e^{\pi}D'(e^{\pi})}{D(e^{\pi})} \quad \text{where } \pi = \log p \implies D(p) = q_0 \exp\left[-\int_{\log p_0}^{\log p} \eta(\pi) \, \mathrm{d}\pi\right].$$

Constraint (on the mean of η):

$$\mathcal{E} = \left\{ \eta \text{ is increasing s.t. } \int_{\log p_0}^{\log p_1} \eta(\pi) \, \mathrm{d}\pi = \log\left(rac{q_0}{q_1}
ight)
ight\}.$$

Welfare:

$$\begin{cases} \overline{\Delta CS} = q_0 \cdot \max_{\eta \in \mathcal{E}} \int_{p_0}^{p_1} \exp\left[-\int_{\log p_0}^{\log p} \eta(\pi) \, \mathrm{d}\pi\right] \, \mathrm{d}p, \\ \underline{\Delta CS} = q_0 \cdot \min_{\eta \in \mathcal{E}} \int_{p_0}^{p_1} \exp\left[-\int_{\log p_0}^{\log p} \eta(\pi) \, \mathrm{d}\pi\right] \, \mathrm{d}p. \end{cases}$$

Introduction

Basic model

Extensions

Definition: $\eta_1 \succeq \eta_2$ if η_1 is a mean-preserving spread of η_2 , *i.e.*,

$$\eta_1 \succeq \eta_2 \iff \int_{\log p_0}^{\log p} \eta_1(\pi) \, \mathrm{d}\pi \ge \int_{\log p_0}^{\log p} \eta_2(\pi) \, \mathrm{d}\pi \qquad orall \, p \in [p_0, p_1].$$

- This defines a *partial order* on \mathcal{E} .
 - \Rightarrow Can think of this as second-order stochastic dominance.
 - $\Rightarrow~$ Because η is increasing, can think of η as a CDF (shifted and scaled).

Step #2: connecting to welfare

Lemma: The welfare objective is decreasing in the partial order \succeq :

$$\eta_1 \succeq \eta_2 \implies \int_{p_0}^{p_1} \exp\left[-\int_{\log p_0}^{\log p} \eta_1(\pi) \, \mathrm{d}\pi\right] \, \mathrm{d}p \leq \int_{p_0}^{p_1} \exp\left[-\int_{\log p_0}^{\log p} \eta_2(\pi) \, \mathrm{d}\pi\right] \, \mathrm{d}p.$$

Proof: Pointwise comparison of the integrands.

Step #2: connecting to welfare

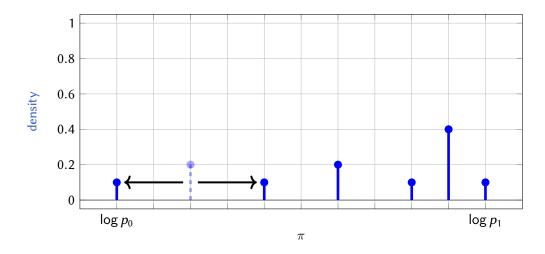
Lemma: The welfare objective is decreasing in the partial order \succeq :

$$\eta_1 \succeq \eta_2 \implies \int_{p_0}^{p_1} \exp\left[-\int_{\log p_0}^{\log p} \eta_1(\pi) \, \mathrm{d}\pi\right] \, \mathrm{d}p \leq \int_{p_0}^{p_1} \exp\left[-\int_{\log p_0}^{\log p} \eta_2(\pi) \, \mathrm{d}\pi\right] \, \mathrm{d}p.$$

Proof: Pointwise comparison of the integrands.

Corollary. The lower (*resp.*, upper) bound is attained by iteratively applying meanpreserving spreads (*resp.*, mean-preserving contractions) to $\eta(\pi)$.

Consider the density that generates $\eta(\pi)$, where $\eta(\pi)$ is viewed as a CDF:

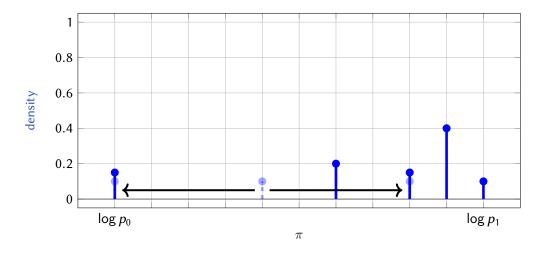


Introduction

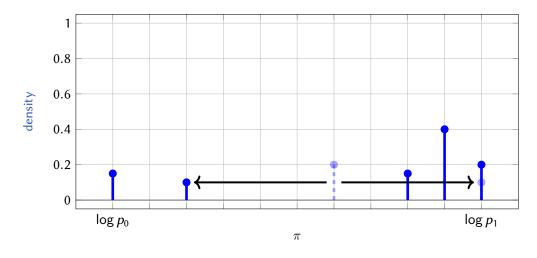
Basic model

Extensions

Consider the density that generates $\eta(\pi)$, where $\eta(\pi)$ is viewed as a CDF:



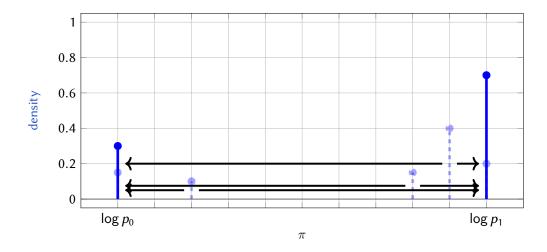
Consider the density that generates $\eta(\pi)$, where $\eta(\pi)$ is viewed as a CDF:



Basic model

Extensions

Consider the density that generates $\eta(\pi)$, where $\eta(\pi)$ is viewed as a CDF:



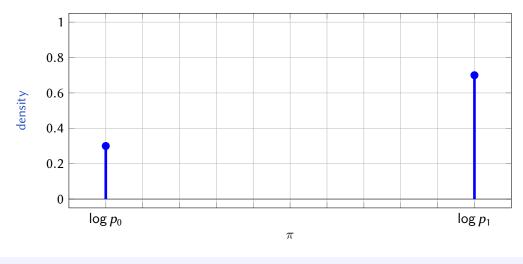
Introduction

Basic model

Extensions

Step #3: deriving the *lower* bound

Consider the density that generates $\eta(\pi)$, where $\eta(\pi)$ is viewed as a CDF:

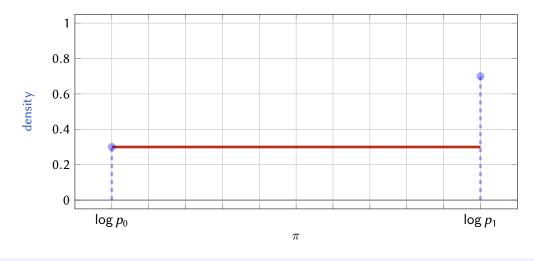


Introduction

Extensions

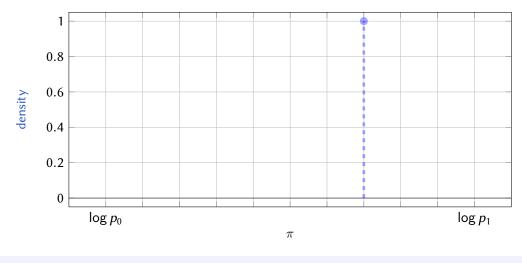
Step #3: deriving the *lower* bound

So the $\eta(\pi)$ that attains the **lower bound on welfare** is **constant** between p_0 and p_1 :



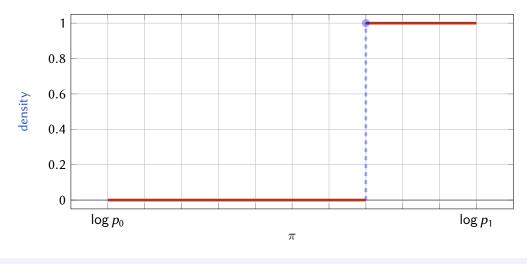
Step #3: deriving the upper bound

Similarly, the $\eta(\pi)$ that attains the **upper bound on welfare** is a **step function**.



Step #3: deriving the upper bound

Similarly, the $\eta(\pi)$ that attains the **upper bound on welfare** is a **step function**.



Step #3: deriving welfare bounds

• Mapping back from $\eta(\pi)$ into demand curves D(p):

 $\eta(\pi)$ is constant $\iff D(p)$ has constant elasticity.

Step #3: deriving welfare bounds

• Mapping back from $\eta(\pi)$ into demand curves D(p):

 $\eta(\pi)$ is constant $\iff D(p)$ has constant elasticity.

This proves the bounds for assumption (A1) (decreasing elasticity):

- The **upper bound** is attained by a 2-piece CES interpolation.
- The lower bound is attained by a 1-piece CES interpolation.

Step #3: deriving welfare bounds

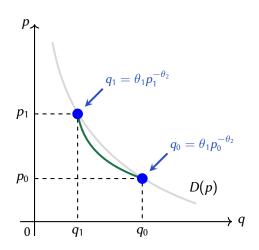
• Mapping back from $\eta(\pi)$ into demand curves D(p):

 $\eta(\pi)$ is constant $\iff D(p)$ has constant elasticity.

This proves the bounds for assumption (A1) (decreasing elasticity):

- The upper bound is attained by a 2-piece CES interpolation.
- The lower bound is attained by a 1-piece CES interpolation.
- The same proof strategy works for all the other assumptions.

Step #4: solving for θ_1 **and** θ_2



We solve simultaneously:

$$\left\{egin{array}{ll} q_0&= heta_1p_0^{- heta_2},\ q_1&= heta_1p_1^{- heta_2}. \end{array}
ight.$$

The solution (θ_1^*, θ_2^*) determines the interpolation:

$$D(p) = \theta_1^* p^{-\theta_2^*}.$$

This can be done for each assumption, as each curve has 2 parameters.

Introduction

Sasic model

tensions

2 Assumptions on demand curvature: proof

Theorem 2a. (concave-like assumptions).

The **lower** bound for the change in consumer surplus are attained by:

(A1) decreasing elasticity: a CES interpolation.

 $D(p) = \theta_1 p^{-\theta_2}$

2) Assumptions on demand curvature: combining assumptions

Theorem 2a. (concave-like assumptions).

The **lower** bound for the change in consumer surplus are attained by:

(A1) decreasing elasticity: a CES interpolation.

 $D(p) = \theta_1 p^{-\theta_2}$

In the absence of other assumptions, we cannot say more about the other bound.

 \sim Why? Because the assumptions do not rule out the upper bound of Varian (1985).

2) Assumptions on demand curvature: combining assumptions

Theorem 2a. (concave-like assumptions).

The **lower** bound for the change in consumer surplus are attained by:

(A1) decreasing elasticity: a CES interpolation.

 $D(p) = \theta_1 p^{-\theta_2}$

In the absence of other assumptions, we cannot say more about the other bound.

 \sim Why? Because the assumptions do not rule out the upper bound of Varian (1985).

However, we can

#1. combine different demand curvature assumptions; or

2) Assumptions on demand curvature: combining assumptions

Theorem 2a. (concave-like assumptions).

The **lower** bound for the change in consumer surplus are attained by:

(A1) decreasing elasticity: a CES interpolation.

In the absence of other assumptions, we cannot say more about the other bound.

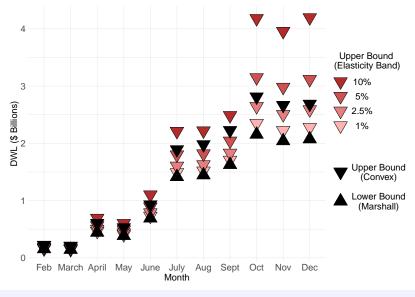
 \sim Why? Because the assumptions do not rule out the upper bound of Varian (1985).

However, we can

- **#1.** combine different demand curvature assumptions; or
- **#2.** combine demand curvature assumptions with assumption that elasticity lies in $[\underline{\varepsilon}, \overline{\varepsilon}]$.

 $D(p) = \theta_1 p^{-\theta}$

Bounding the tariff DWL across countries and products



Introduction

asic model

Extensions

Interpretation of tariff DWL bounds

• Our **lower bound** on DWL incurred over 2018 is **\$12.6 billion**.

- The tariff revenue gained over 2018 is \$15.6 billion.
- A linear interpolation yields a DWL estimate of \$16.8 billion.
- Question. Is there a sense in which \$16.8 billion might be an overestimate?
 - Yes, if we expect the change in elasticity down the demand curve to be small.
 - \sim If we expect the demand curve to be **convex**, then \$16.8 billion is an **upper bound**.
- Question. Is there a sense in which \$16.8 billion might be an underestimate?
 - Yes, if we expect the change in elasticity down the demand curve to be large.

Extensions to the basic model

Our welfare bounds for the basic model rely on a number of modeling choices:

1) In practice, the analyst might make assumptions about demand curvature.

 \implies We show how **demand curvature** assumptions lead to tighter bounds.

2 In practice (e.g., counterfactuals), the analyst might observe p_0 , p_1 , and q_1 , but not q_0 . \implies We show how to **extrapolate** from fewer observations.

3 In practice, the analyst might observe more points on the demand curve.

 \implies We show how to **interpolate** with more observations. \bigcirc Details

4) In practice, the analyst might be limited by sampling error.

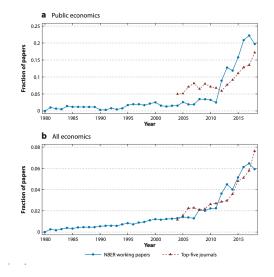
 \implies We show how to incorporate **sampling error** into welfare bounds. \bigcirc Details

Further extensions: welfare beyond ΔCS

- **#1.** Producer surplus works just as well as CS.
- **#2.** Can handle heterogeneity + distributional questions.
- #3. Can handle alternative welfare measures like EV and CV.
- #4. Can handle multiple objectives at once.
 - \sim E.g., Pareto-weighted consumer surplus + DWL.
- **#5.** Can handle multi-product markets.

 \sim At least under constraints on cross-price and own-price elasticities.

MVPF and the "sufficient statistics" approach



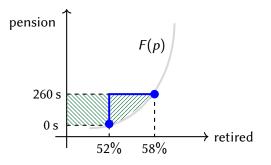
Source: Kleven (2021)

Introduction

Basic model

Extensions

MVPF example: WTP of 1911 UK pension recipients

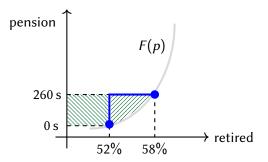


- Based on Giesecke and Jäger (2021).
- Setting: pensions created for poor
 >70-year-olds in the UK in 1911.
- Question: what is the MVPF of the pension policy?
- Approach: MVPF = (WTP for not working) / (cost of pension).
- Method: compute % marginal workers via RD; assume marginal workers' WTP = 0.

Discussion

Extensions

MVPF example: WTP of 1911 UK pension recipients

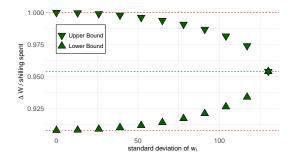


- What is a "demand curve" here?
- Problem #1: we don't actually know the distribution of incomes.
- Problem #2: the inherent cost/value of retirement might be heterogeneous.
- ► Approach: each retirement is a discrete choice: *i* retires iff *p* ≥ *w_i*. *w_i* ∼ *F*, where *F*(*p*) = prob of retirement.

• Model:
$$\Delta W = \int_{p_0}^{p_1} F(p) \, \mathrm{d}p.$$

Extensions

MVPF example: WTP of 1911 UK pension recipients



- What is a "demand curve" here?
- Problem #1: we don't actually know the distribution of incomes.
- Problem #2: the inherent cost/value of retirement might be heterogeneous.
- ▶ Approach: Each retirement is a discrete choice: *i* retires iff *p* ≥ *w_i*. Model uncertainty in the variance of the prob of retirement *F*(*p*).

• Model:
$$\Delta W = \int_{p_0}^{p_1} F(p) dp$$
.

Introduction

Basic model

Extensions

Sufficient statistics for income taxation

- Consider an exogenous change in marginal tax rates.
- Estimate a *local elasticity* of taxable income.
- ▶ Invoke envelope theorem to argue other effects are 2nd order.
- Compute the marginal change in welfare as a function of measured elasticity

Feldstein (1999):
$$\frac{\mathrm{d}W(\tau)}{\mathrm{d}\tau} = \tau \cdot \frac{\mathrm{d}\operatorname{TI}(\tau)}{\mathrm{d}\tau}.$$

Extensions

Sufficient statistics for income taxation

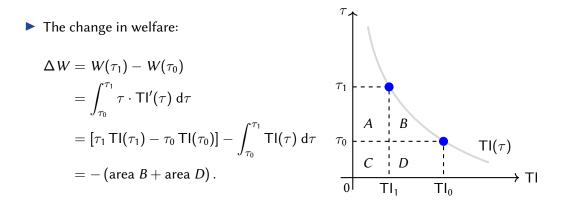
- Consider an exogenous change in marginal tax rates.
- Estimate a *local elasticity* of taxable income.
- ▶ Invoke envelope theorem to argue other effects are 2nd order.
- Compute the marginal change in welfare as a function of measured elasticity

Feldstein (1999):
$$\frac{\mathrm{d}W(\tau)}{\mathrm{d}\tau} = \tau \cdot \frac{\mathrm{d}\operatorname{TI}(\tau)}{\mathrm{d}\tau}.$$

• To obtain total welfare change, integrate
$$dW(\tau)/d\tau$$
.

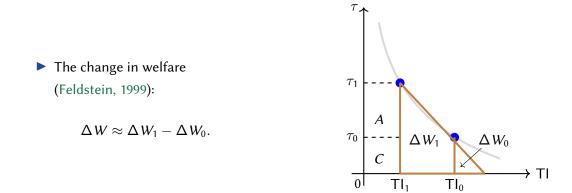
Extensions

A robust bounds approach to Feldstein (1999)



Extensions

A robust bounds approach to Feldstein (1999)



Basic model

Extensions

Elasticity estimates and welfare: Feldstein (1995/9)

- Data: the Tax Reform Act of 1986 dramatically reduced top tax rates.
- ▶ Estimates: Feldstein "diff-in-diff" estimates range from −1.04 to −1.48.
 - Consider -0.55 and -1.33 as "boundary cases."

Elasticity estimates and welfare: Feldstein (1995/9)

- Data: the Tax Reform Act of 1986 dramatically reduced top tax rates.
- ▶ Estimates: Feldstein "diff-in-diff" estimates range from -1.04 to -1.48.
 - Consider -0.55 and -1.33 as "boundary cases."
- ▶ Illustrative example: consider a taxpayer with \$180,000 of taxable income.
 - A linear interpolation predicts DWL of \$7,458.

Elasticity estimates and welfare: Feldstein (1995/9)

- Data: the Tax Reform Act of 1986 dramatically reduced top tax rates.
- ▶ Estimates: Feldstein "diff-in-diff" estimates range from -1.04 to -1.48.
 - Consider -0.55 and -1.33 as "boundary cases."
- ▶ Illustrative example: consider a taxpayer with \$180,000 of taxable income.
 - A linear interpolation predicts DWL of \$7,458.
- Robust bounds for the example:
 - Box bounds for the DWL are \$6,615 and \$8,301.
 - Elasticity bounds using [-1.33, -0.55] are \$7,400 and \$7,418.
 - \rightsquigarrow The elasticity bounds reject the linear interpolation!

Summing up

- **This paper.** Develops a framework to bound welfare based on economic reasoning.
- **Building on previous work.** Hope to make the case that everyone should use this.
- **Use cases.** Draw/assess conclusions from empirical objects commonly estimated.
- **Future work.** We're excited about this.
 - Robustness for structural IO-style problems (e.g., inference with endogenous pricing, merger screens, welfare in horizontally differentiated good markets).
 - Robustness for new goods and price indices (e.g., the CPI).
 - Robustness for larger macro models (e.g., extending ACR, ACDR).

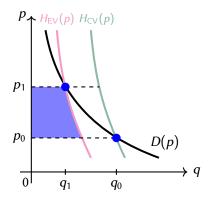
- Aguirre, Inaki, Simon Cowan, and John Vickers, "Monopoly Price Discrimination and Demand Curvature," *American Economic Review*, 2010, *100* (4), 1601–15.
- Amiti, Mary, Stephen J. Redding, and David E. Weinstein, "The Impact of the 2018 Tariffs on Prices and Welfare," *Journal of Economic Perspectives*, 2019, *33* (4), 187–210.
- Auffhammer, Maximilian and Edward Rubin, "Natural Gas Price Elasticities and Optimal Cost Recovery Under Consumer Heterogeneity: Evidence From 300 Million Natural Gas Bills," *Working paper*, 2018.
- Bagnoli, Mark and Ted Bergstrom, "Log-Concave Probability and Its Applications," *Economic Theory*, 2005, *26* (2), 445–469.
- Bulow, Jeremy and John Roberts, "The Simple Economics of Optimal Auctions," *Journal of Political Economy*, 1989, *97* (5), 1060–1090.

- **Caplin, Andrew and Barry Nalebuff**, "Aggregation and Imperfect Competition: On the Existence of Equilibrium," *Econometrica*, 1991, *59* (1), 25–59.
- and __, "Aggregation and Social Choice: A Mean Voter Theorem," *Econometrica*, 1991, 59 (1), 1–23.
- **Chetty, Raj**, "Sufficient Statistics for Welfare Analysis: A Bridge Between Structural and Reduced-Form Methods," *Annual Review of Economics*, 2009, *1* (1), 451–488.
- Feldstein, Martin, "Tax Avoidance and the Deadweight Loss of the Income Tax," *Review of Economics and Statistics*, 1999, *81* (4), 674–680.
- Finkelstein, Amy and Nathaniel Hendren, "Welfare Analysis Meets Causal Inference," Journal of Economic Perspectives, 2020, 34 (4), 146–67.
- **Fogel, Robert William**, *Railroads and American economic growth*, Johns Hopkins Press Baltimore, 1964.

- **Giesecke, Matthias and Philipp Jäger**, "Pension Incentives and Labor Supply: Evidence from the Introduction of Universal Old-Age Assistance in the UK," *Journal of Public Economics*, 2021, 203, 104516.
- Hahn, Robert W. and Robert D. Metcalfe, "Efficiency and Equity Impacts of Energy Subsidies," *American Economic Review*, 2021, *111* (5), 1658–88.
- Kleven, Henrik J., "Sufficient Statistics Revisited," Annual Review of Economics, 2021, 13.
- Krugman, Paul R., "Increasing Returns, Monopolistic Competition, and International Trade," Journal of International Economics, 1979, 9 (4), 469–479.
- Manski, Charles F., "Monotone Treatment Response," Econometrica, 1997, 65 (6), 1311-1334.
- Marshall, Alfred, Principles of Economics, London, UK: Macmillan and Co., 1890.
- **Myerson, Roger B.**, "Optimal Auction Design," *Mathematics of Operations Research*, 1981, 6 (1), 58–73.

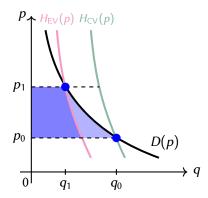
- Rosen, J. B., "Existence and Uniqueness of Equilibrium Points for Concave *N*-person Games," *Econometrica*, 1965, pp. 520–534.
- Svizzero, Serge, "Cournot Equilibrium with Convex Demand," *Economics Letters*, 1997, *54* (2), 155–158.
- Szidarovszky, Ferenc and Sidney Yakowitz, "A New Proof of the existence and uniqueness of the Cournot equilibrium," *International Economic Review*, 1977, *18* (3), 787–789.
- Tsitsiklis, John N. and Yunjian Xu, "Efficiency Loss in a Cournot Oligopoly with Convex Market Demand," *Journal of Mathematical Economics*, 2014, *53*, 46–58.
- Varian, Hal R., "Price Discrimination and Social Welfare," American Economic Review, 1985, 75 (4), 870–875.
- Willig, Robert D., "Consumer's Surplus Without Appology," *American Economic Review*, 1976, *66* (4), 589–597.

Consumer surplus provides bounds for equivalent and compensating variations.



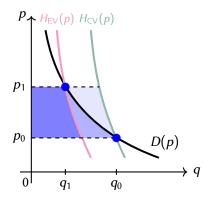
• Generally: $EV \le CS \le CV$.

Consumer surplus provides bounds for equivalent and compensating variations.



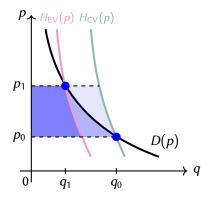
• Generally: $EV \le CS \le CV$.

Consumer surplus provides bounds for equivalent and compensating variations.



• Generally: $EV \le CS \le CV$.

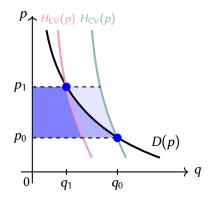
Consumer surplus provides bounds for equivalent and compensating variations.



- Generally: $EV \leq CS \leq CV$.
- When income effects are 0 (e.g., with quasilinearity): EV = CS = CV.
- When income effects are ≈ 0:
 EV ≈ CS ≈ CV (Willig, 1976)
 (also if demand is pretty inelastic).

Mapping CS to EV/CV when income effects are big

We can compute EV/CV bounds under assumptions about the Hicksian demand curve.



- But! we don't observe counterfactual expenditures.
- Need to bound $e(p_1, u_0)$ for CV.
- Need to bound $e(p_0, u_1)$ for EV.
- ► This maps to our "1-point" extension.

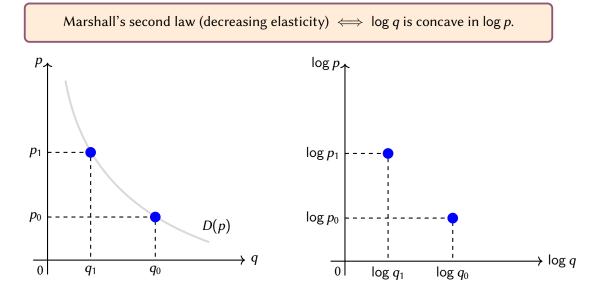
▲ Basic Model ► Skip to End

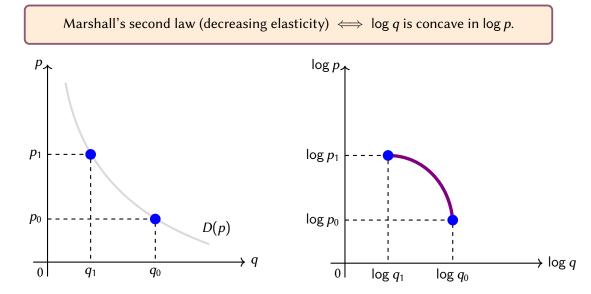
Theorem 2a. (concave-like assumptions).

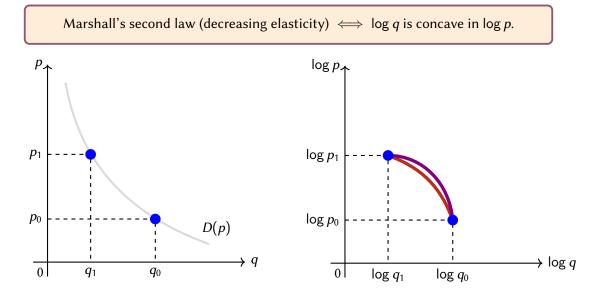
The **lower** bound for the change in consumer surplus are attained by:

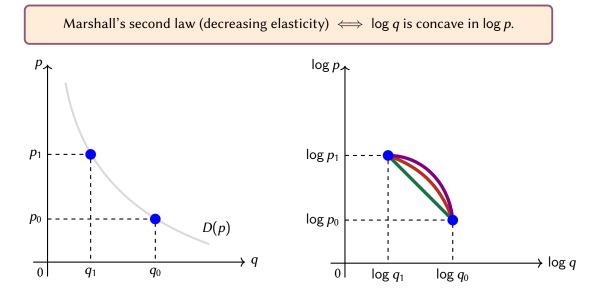
(A1) decreasing elasticity: a CES interpolation.

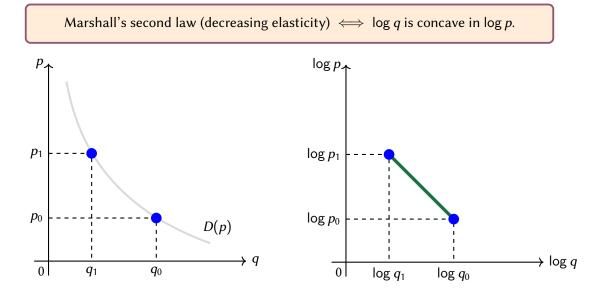
 $D(p) = \theta_1 p^{-\theta_2}$

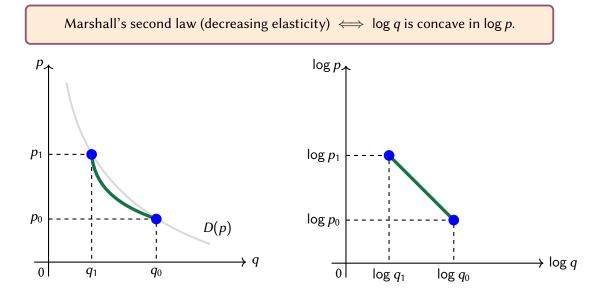


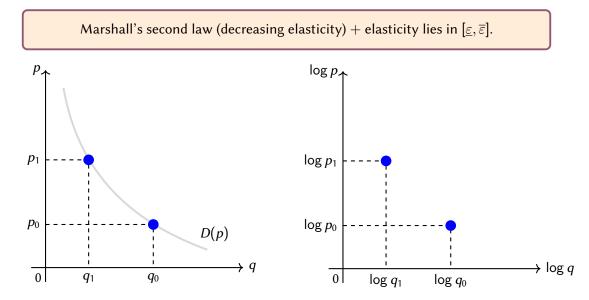




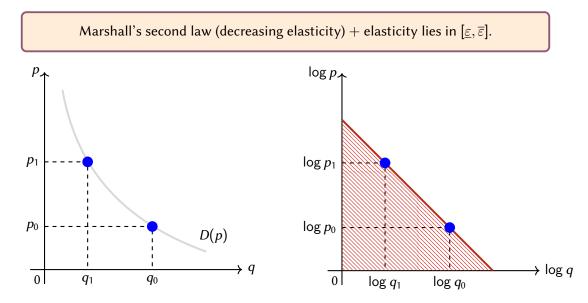


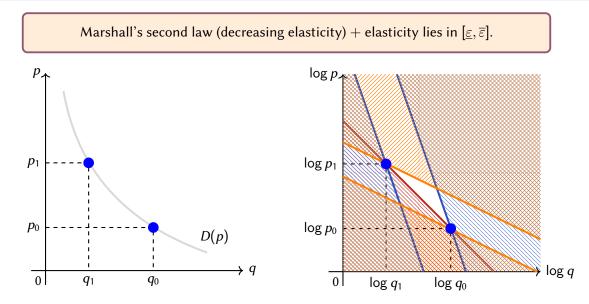




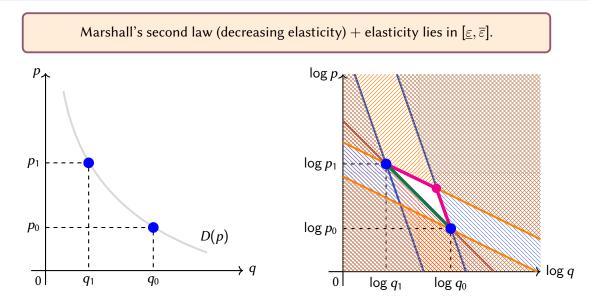


▲ Back

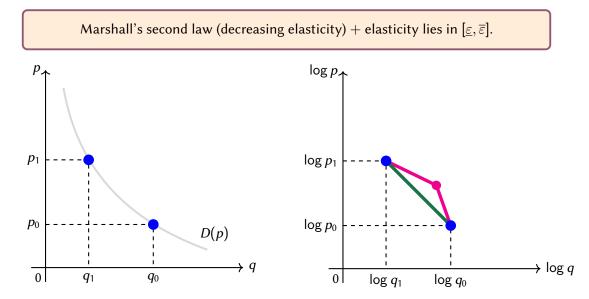


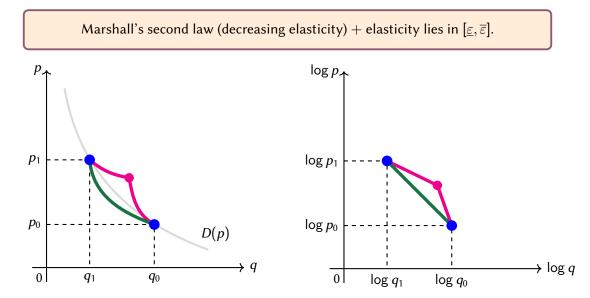


▲ Back



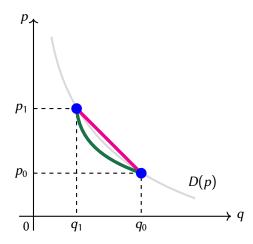
▲ Back





Assumptions on demand curvature: combining assumptions

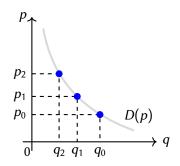
Marshall's second law (decreasing elasticity) + convex demand.



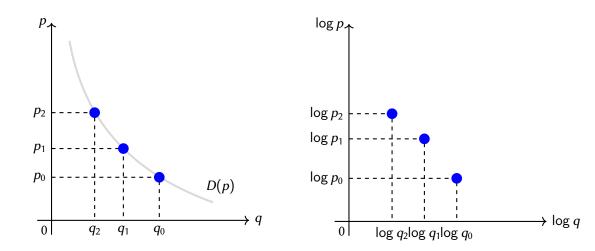
An analyst observes **3 points** on a demand curve: (p_0, q_0) , (p_1, q_1) , and (p_2, q_2) .

We assume that elasticity between p_0 and p_2 lie in the interval $[\underline{\varepsilon}, \overline{\varepsilon}] \subset \mathbb{R}_{\leq 0}$.

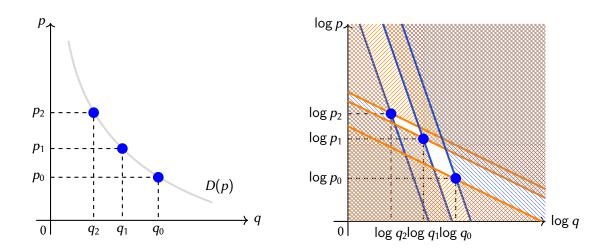
Question. What is the change in consumer surplus from p_0 to p_2 ?



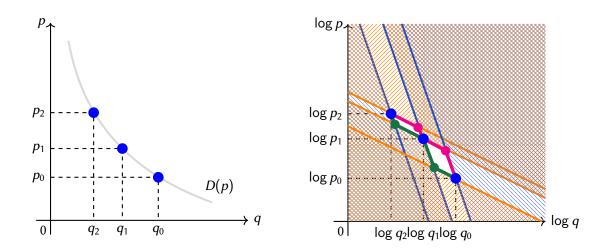
3) Interpolating with more data: geometric intuition



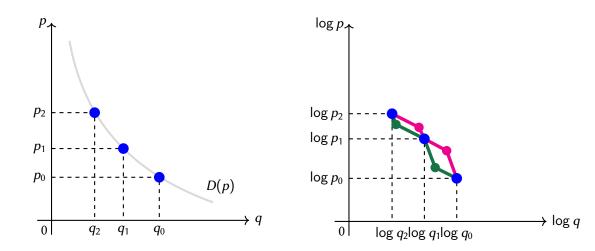
3 Interpolating with more data: geometric intuition



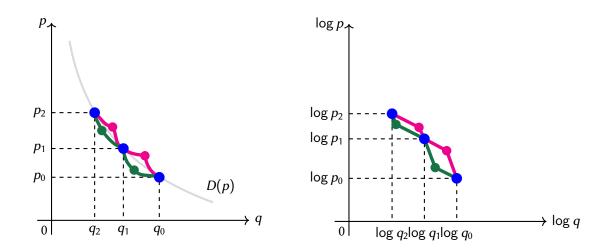
3 Interpolating with more data: geometric intuition



3) Interpolating with more data: geometric intuition



3) Interpolating with more data: geometric intuition



Quantities demanded might be noisily observed:

$$q_1 = D(p_1) + e$$
 where $e \sim \mathcal{N}\left(0, \sigma^2/N_1
ight)$.

Question. What is the 95% CI on the change in consumer surplus from p_0 to p_1 ?

- \implies The bounds $\overline{\Delta CS}(q_0, q_1)$ and $\underline{\Delta CS}(q_0, q_1)$ are monotonic in q_1 .
- \implies CIs on Δ CS can be obtained by plugging in the CIs of q_1 .