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Most U.S. government spending on highways and bridges is done through “scaling”
procurement auctions, in which private construction firms submit unit price bids for
each piece of material required to complete a project. Using data on bridge mainte-
nance projects undertaken by the Massachusetts Department of Transportation (Mass-
DOT), we present evidence that firm bidding behavior in this context is consistent with
optimal skewing under risk aversion: firms limit their risk exposure by placing lower
unit bids on items with greater uncertainty. We estimate the amount of uncertainty in
each auction, and the distribution of bidders’ private costs and risk aversion. Simulating
equilibrium item-level bids under counterfactual settings, we estimate the fraction of
project spending that is due to risk and evaluate auction mechanisms under considera-
tion by policymakers. We find that scaling auctions provide substantial savings relative
to lump sum auctions and show how our framework can be used to evaluate alternative
auction designs.

KEYWORDS: Scoring auctions, procurement, risk-averse bidders, multidimensional
bids, empirical market design.

1. INTRODUCTION

INFRASTRUCTURE INVESTMENT underlies nearly every part of the American economy
and constitutes hundreds of billions of dollars in public spending each year.! However, in-
vestments are often directed into complex projects that experience unexpected changes.
Project uncertainty can be costly to the firms that implement construction—many of
whose businesses are centered on public works—and to the government. The extent of
firms’ risk exposure depends not only on project design, but also on the mechanism used
to allocate contracts. Contracts with lower risk exposure may be more lucrative, and thus
invite more competitive bids. As such, risk sharing between firms and the government can
play a significant role in the effectiveness of policies meant to reduce taxpayer expendi-
tures.

We study the mechanism by which contracts for construction work are allocated by
the Highway and Bridge Division of the Massachusetts Department of Transportation
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(MassDOT or “the DOT”). Along with 40 other states, MassDOT uses a scaling auction,
in which bidders submit a unit price bid for each item in a comprehensive list of tasks and
materials required to complete a project. The winning bidder is determined by the lowest
sum of unit bids multiplied by item quantity estimates produced by MassDOT project
designers. This winner is then paid based on the quantities ultimately used in completing
the project.

Scaling auctions thus have several key features. First, they are widespread and common
in public infrastructure procurement. Second, they collect bids over units (i.e., tasks and
materials) that are standardized and comparable across auctions. Third, they implement
a partial sharing of risk between the government and private contractors.

To study auction design in this setting, we specify and estimate a model of bidding in
scaling auctions with risk-averse bidders. Our model characterizes equilibrium bids in two
separable steps: an “outer” condition that ensures that a bidder’s score—the weighted sum
of unit bids that is used to determine the winner of the auction—is optimally competitive
with respect to the opposing bidders, and an “inner” condition that ensures that the unit
bids chosen to sum up to the equilibrium score maximize the expected utility of winning.
As first noted by Athey and Levin (2001) in the context of timber auctions, the “inner”
condition constitutes a portfolio optimization problem for bidders: equilibrium unit bids
distribute a bidder’s score across different items, trading off higher expected profits from
high bids on items predicted to overrun against higher risk from low bids on other items.

The separability of the “inner” and “outer” problems yields a useful property: given
an observation of a bidder’s equilibrium score, her equilibrium unit bids are fully speci-
fied by the characterization of her (“inner”) portfolio problem. Previous work on scoring
auctions has exploited such separability to succinctly characterize equilibrium play. Study-
ing auctions with quasilinear scoring rules and risk-neutral bidders, Asker and Cantillon
(2008) show that equilibrium outcomes can be characterized through a one-dimensional
auction over scores, even when bidder types are high-dimensional. Closer to our setting,
Athey and Levin (2001) use separability to argue that observations of profitable skewing—
placing higher bids on items that ultimately overran—can be interpreted as evidence that
bidders were better informed than the auctioneer. In this paper, we take this logic further
and show that the solutions to bidders’ portfolio problems—subject to their scores—can
be used to estimate the distribution of bidder types and simulate the outcomes of coun-
terfactual DOT policies.

Using a detailed data set obtained through a partnership with MassDO'T, we establish
the patterns of bidding behavior that motivate our approach. For each auction in our
study, we observe the full set of items involved in construction, along with the ex ante
DOT estimate and ex post realization of the quantity of each item, a DOT estimate of the
market unit rate for the item, and the unit price bid that each bidder who participated in
the auction submitted. As in prior work, we show that contractors skew their bids, placing
high unit bids on items that tend to overrun the DOT quantity estimates and low unit
bids on items that tend to underrun. This suggests that contractors are generally able to
predict the direction of ex post changes to project specifications, and bid so as to increase
their ex post earnings.

Furthermore, our data suggest that contractors are risk averse. As noted in Athey and
Levin (2001), risk-neutral bidders would be predicted to submit “penny” bids—unit bids
of essentially zero—on all but the items that are predicted to overrun by the largest
amount. By contrast, the vast majority of unit bids observed in our data are interior (i.e.,
nonextremal), even though no significant penalty for penny bidding has ever been exer-
cised. We show that while contractors bid higher on items predicted to overrun, holding
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all else fixed, they also bid lower on items that are more uncertain. This suggests that
contractors optimize not only with respect to expected profits, but also with respect to the
risk that any given expectation will turn out to be wrong.

Bidder risk aversion, combined with inherent project risk, has significant implications
for DOT spending, as well as for the efficacy of policies to reduce it. Risk-averse bidders
internalize a utility cost from uncertainty and require higher overall bids in order to insure
themselves sufficiently to be willing to participate. As such, auction rules that decrease
bidders’ exposure to significant losses can be effective toward lowering overall bids and
subsequently lowering DOT payments to the winning bidder.

In order to gauge the level of risk and risk aversion in our data, we estimate a struc-
tural model of uncertainty and optimal bidding. In the first stage of our estimation pro-
cedure, we use the history of predicted and realized item quantities to fit a model of
bidder uncertainty over item quantity realizations. In the second stage, we construct a
Generalized Method of Moments (GMM) estimator for bidders’ costs and risk aver-
sion in each project. Our estimator relies only on predictions of optimal unit bids at the
auction-bidder-item level, evaluated from each bidder’s portfolio problem subject to the
constraint implied by her observed score. As such, our identification strategy leverages
granular variation in project composition (e.g., which items are needed, at what market
rate, and in what quantities), in addition to more standard project characteristics such as
the identity of the designing engineer. As our predictions of optimal bids capture the bid-
ders’ competitive considerations entirely through their scores—which are taken as data—
our estimation approach does not require strong assumptions about bidders’ beliefs about
their opponents, nor does it require exogenous variation in the composition of bidders
across auctions.

We use our structural estimates to evaluate the cost of uncertainty to the DOT, as well
as the performance of scaling auctions relative to alternatives used in other procurement
settings. Using an independent private values (IPV) framework and a calibrated model
of endogenous participation in the spirit of Samuelson (1985), we simulate equilibrium
outcomes under a counterfactual setting in which uncertainty about item quantities is
reduced to zero. When bidder predictions are held fixed—the only change is that un-
certainty about these predictions is eliminated—we find that DOT spending decreases
by 14.5% for the median auction. This suggests that project uncertainty contributes to a
substantial risk premium.

However, scaling auctions perform quite well on the whole, given the level of uncer-
tainty in these projects. The most common alternative mechanism for procurement is a
lump sum auction, in which bidders commit to a total payment at the time of the auction
and are liable for all implementation costs afterward. Lump sum auctions require less
planning by the DOT, and they incentivize bidders to be economical when they can be.
But for projects that are highly standardized and monitored—such as the bridge projects
in our data—lump sum auctions primarily shift risk from the DOT onto the risk-averse
bidders. Seen in this light, scaling auctions provide a powerful lever for the DOT to lower
its costs: not only do scaling auctions provide insurance by reimbursing bidders for ev-
ery item that is ultimately used, but they also allow bidders to hedge their risks through
portfolio optimization.

Our simulations suggest that moving from the scaling format to a lump sum format
would increase DOT spending by 42% for the median auction. However, this result com-
pounds two opposing effects. Bidders in a lump sum auction need to bid higher overall
in order to compensate for their increased liability. These higher bids translate to higher
costs for the DOT. On the other hand, higher liability may also cause the least competitive
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bidders to be priced out and choose not to participate in the auction at all. This reduces
the number of participating bidders on average, but increases the competitiveness of the
bidders who do participate. In our sample, the marginal bidder willing to participate un-
der the lump sum format was 20% more cost-efficient and 28% less risk averse than the
marginal bidder under the scaling format. This positive selection effect cuts the overall
cost of moving to a lump sum format by more than half: were participation held fixed,
lump sum auctions would be 96% more costly to the DOT than scaling auctions.

Given these results, we ask whether scaling auctions can be further improved through a
policy that might reasonably be considered by the DOT. A hybrid format in which bidders
commit to a fixed payment at the time of bidding, but are able to renegotiate for a higher
payment ex post, eliminates most of the added DOT costs from lump sum liability. In
our sample, renegotiation with 2:1 bargaining power after a lump sum auction reduces
added DOT costs to 14%, while renegotiation with equal bargaining power reduces added
costs to only 8.5%. Still, both renegotiation options increase costs relative to the baseline
scaling auction, and neither affects the distribution of participants substantially. As we do
not find evidence of sufficient moral hazard to overturn these results in our setting, we
conclude that switching to any type of lump sum format is unlikely to improve upon the
status quo.

Furthermore, while we find a substantial risk premium by eliminating uncertainty hold-
ing everything else fixed, a policy to reduce uncertainty—through training or directives,
for instance—may not be very effective at reducing costs in practice. Uncertainty in our
data is fairly symmetric: underruns and overruns both occur frequently, both in quanti-
ties and in DOT spending. As such, when we compare the no-uncertainty counterfactual
against the status quo, DOT costs increase by nearly 2% for the median auction once
changes in bidder participation are accounted for. This is because eliminating uncertainty
gives bidders access to the exact quantities that will ultimately be used, allowing them to
avoid making “mistakes” (from an ex post perspective) that had benefited the DOT under
uncertainty. In many cases, the DOT cost from this difference in predictions counteracts
the savings from the elimination of the risk premium. Thus, we also conclude that the
benefit from policies to reduce uncertainty may not hold up in light of practical consider-
ations.

2. RELATED LITERATURE

Strategic bid skewing in scaling auctions has been documented in various contexts
where bidders may be better informed than the auctioneer. Studying U.S. timber auctions,
Athey and Levin (2001) first established that positive correlations between (dollar) over-
bids and (unit) overruns in auction data could be interpreted as evidence that bidders are
able to predict which components of their bids will overrun. Bajari, Houghton, and Tadelis
(2014) made a similar observation in the context of highway paving procurement auctions
in California. However, neither paper evaluates the welfare impact of bid-skewing or the
underlying uncertainty that causes it.

Bidders who are risk-neutral, as in the model proposed by Bajari, Houghton, and
Tadelis (2014), would be predicted to skew “completely”—that is, bid high on one com-
ponent of the project and zero on all the others—unless they face an additional incentive
not to do so. Moreover, absent such an incentive, there is no welfare cost to skewing what-
soever: were the government to perfectly predict quantities such that there are no over-
runs, the ultimate payment to the winning bidder would be the same. Bajari, Houghton,
and Tadelis (2014) accounts for the lack of complete skewing in their data by imposing a
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penalty on unit bids that increases in both the distance between the bid and the govern-
ment’s unit cost estimate and the distance between the ex ante unit quantity estimate and
the ex post realization of that quantity. While this enables Bajari, Houghton, and Tadelis
(2014) to estimate average adaptation cost multipliers and calibrate the cost of ex post
renegotiation, the penalty function coefficient is not found to be significantly different
from zero, and no bidder-specific types or counterfactual strategies are estimated.

As in Athey and Levin (2001), our paper argues that the absence of complete skewing
is primarily driven by risk aversion. Our model of risk-averse bidding predicts that unit
bids will be skewed both as a function of bidders’ predictions of ex post quantities and the
amount of uncertainty in each prediction. The heart of our paper rests in the resulting
portfolio optimization problem. This problem determines the spread of unit bids for each
score that a bidder submits, and consequently, both the bidder’s private value for winning
the auction and the government’s ex post payment to the bidder if she wins—both of
which differ from the score itself.

The portfolio characterization of bid skewing has several key implications for the anal-
ysis of scaling auctions. First, it allows us to construct reduced form correlation tests for
risk aversion: much as a positive correlation between overbids and overruns is evidence
of bidder information, a negative correlation between absolute markups and component-
level uncertainty is indicative of risk aversion. Second, it provides a novel channel for
identification of bidder and auction-level model parameters. Our identification strategy
differs from the canonical approaches of Guerre, Perrigne, and Vuong (2009) (GPV),
Campo, Guerre, Perrigne, and Vuong (2011) and Campo (2012). Like these papers, we
make use of functional form assumptions such as the CARA utility function. However,
whereas their approaches rely on the optimality of single-dimensional bids with respect
to the probability of outcompeting other bidders—analogous to the first-order condition
characterizing the optimal score in our model—our approach uses the optimality of the
composition of unit bids to maximize the value of executing a contract conditional on each
bidder’s score.

This has important implications for the assumptions about equilibrium play that are
required. The Campo and GPV approaches require bids to be interpreted as equilibrium
outcomes of an explicit competitive bidding game—whether a symmetric IPV game or
an asymmetric affiliated values game. By contrast, our identification approach is agnos-
tic to the competitive conditions under which each bidder’s score is chosen. Subject to
comparatively weak conditions that guarantee the separability of the deterministic port-
folio optimization problem from the equilibrium problem of choosing a score for each
bidder, our identification strategy is robust to assumptions about the mapping between
bidder types and equilibrium scores. These assumptions include correlation between cost
efficiency and risk aversion, the possibility of dynamic considerations and even collusion.
This does not mean that we circumvent the nonidentification results detailed in Guerre,
Perrigne, and Vuong (2009): our approach applies a parametric characterization of bid-
ders’ utility and relies on exogenous variation in the distribution of contract values across
auctions. However, the particular assumptions applied are different: instead of assump-
tions on bidders’ beliefs about each other, we use assumptions on bidders’ beliefs about
project characteristics. This set of assumptions may be preferable in a highly standardized
infrastructure procurement setting such as ours, where historical information is publicly
available and bidders are often industry veterans, but where inherent uncertainty about
the underlying physical conditions at each project site is high.

Finally, our portfolio approach facilitates counterfactual analyses of alternative auction
rules. Because bidders are not paid the score that they compete with—but rather an ex
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ante uncertain transformation of their unit bids—a prediction of counterfactual scores
that does not model the relationship between scores and unit bids would be insufficient
to generate predictions for government costs or welfare. Using our model, we evaluate
policies to reduce uncertainty regarding item quantities and to precommit to payments at
the time of bidding.

Our paper contributes to a substantial literature on the efficiency of infrastructure pro-
curement auctions. Closest to us is Luo and Takahashi (2023), a contemporary paper
that studies infrastructure procurement by the Florida DOT. Like us, Luo and Taka-
hashi (2023) considers risk-averse bidders and compares scaling auctions against lump
sum auctions. However, this paper follows a Campo/GPV-style approach for identifica-
tion and reduces the project components that receive unit bids (which number 67 for the
median auction in our data set) into two aggregates—one aggregate certain component
and one aggregate uncertain component—for estimation. As such, while Luo and Taka-
hashi (2023) offers novel evidence of risk aversion and the costliness of lump sum auctions
in settings with high uncertainty, we view our analyses as complementary in methodology
and contribution.

More generally, our paper builds on a rich literature on scoring auctions. While the
theoretical results for risk-neutral bidders in Che (1993) and Asker and Cantillon (2008)
do not apply to our model directly, the separability of equilibrium bidding into an “outer”
score-setting stage and an “inner” portfolio-maximizing stage in our model is analogous to
the separability of quality provision and bidding. Our paper also relates to the theoretical
literature on optimal mechanism design. While we focus on “practical” mechanisms—
ones that do not require knowledge of the bidder-type distribution, for instance—it is
possible to characterize the theoretically optimal mechanism for our setting by applying
the characterization in Maskin and Riley (1984) and Matthews (1987) to our framework.

3. SCALING AUCTIONS WITH MASSDOT

Like most other states, Massachusetts manages the construction and maintenance for
its highways and bridges through its Department of Transportation. In order to develop
a new project, MassDOT engineers assemble a detailed specification of what the project
will entail. This includes an itemized list of every task and material (item) that is necessary
to complete the project, along with estimates for the quantity with which it will be needed
and a market unit rate for its cost. The itemized list of quantities is then advertised to
prospective bidders.

In order to participate in an auction for a given project, a contractor must first be pre-
qualified by MassDOT. Prequalification entails that the contractor is able to complete the
work required, given their staff and equipment. Notably, it generally does not depend on
past performance. In order to submit a bid, a contractor posts a unit price for each of
the items specified by MassDOT. Since April 2011, all bids have been processed through
an online platform, Bid Express, which is also used by 40 other state DOTS. All bids are
private until the completion of the auction.

Once an auction is complete, each contractor is given a score, computed by the sum of
the product of each item’s estimated quantity and the contractor’s unit-price bid for it.
The bidder with the lowest score is then awarded a contract to execute the project in full.
In the process of construction, it is common for items to be used in quantities that devi-
ate from MassDOT specifications. All changes, however, must be approved by an onsite
MassDOT manager. The winning contractor is ultimately paid the sum, across items, of
the product of her unit price bid and the actual quantity of the item that was used. Unit
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prices are almost never renegotiated. However, there is a mechanical price adjustment on
certain commodities such as steel and gasoline if their market prices fluctuate beyond a
predefined threshold (typically 5%).>

MassDOT reserves the right to reject bids that are heavily skewed. However, this has
never been successfully enforced and most bids violate the condition that should trigger
rejection.’ While MassDOT has entertained other proposals to curtail bid skewing, such
as a 2017 push to require minimum unit bids, these efforts have thus far not been success-
ful.

4. DATA AND REDUCED FORM RESULTS

Our data come from MassDOT and cover highway and bridge construction and main-
tenance projects undertaken by the state from 1998 to 2015. We work with projects for
which MassDOT has digital records on (1) identities of the winning and losing bidders;
(2) bids for the winning and losing bidders; and (3) data on the actual quantities used for
each item. 2513 projects meet these criteria, 440 of which are related to bridge work. We
focus on bridge projects for this paper, as these projects are particularly prone to item
quantity adjustments.

All bidders who participate in auctions for these projects are able to see, ex post, how
everyone bid on each item. In addition, all contractors have access to summary statistics
on past bids for each item, across time, and location. Officially, all interested bidders find
out about the specifications and expectations of each project at the same time, when the
project is advertised (a short while before it opens up for bidding). Only those contractors
who have been prequalified at the beginning of the year to do the work required by the
project can bid on the project. Thus, contractors do not have a say in project designs,
which are furnished either in-house by MassDOT or by an outside consultant.

Once a winning bidder is selected, project management moves under the purview of an
engineer working in one of six MassDOT districts around the state. This Project Manager
assigns a Resident Engineer to monitor work on a particular project out in the field and to
be the first to decide whether to approve or reject underruns, overruns, and Extra Work
Orders (EWOs). The full approval process of changes to the initial project design involves
several layers of review. Underruns and overruns, as the DOT defines them and as we
will define them here, apply to the items specified in the initial project design and refer
to the difference between the actual item quantities that were used and the ex ante DOT
estimates. EWOs refer to work done outside of the scope of the initial contract design
and are most often negotiated as lump sum payments from the DOT to the contractor.
For the purposes of our discussion and analyses, we will focus on underruns and overruns
in bridge construction and maintenance projects.

Table I provides summary statistics for the bridge projects in our data set. We mea-
sure the extent to which MassDOT overpays projected project costs in two ways. First, we
consider the difference between what the DOT ultimately pays the winning bidder and
the DOT’s initial estimate of what it will pay at the conclusion of the auction. Summary
statistics for this measure are presented in the “Net Overcost (DOT Quantities)” row of
Table I. While it seems as though the DOT is saving money on net, this is a misrepre-
sentation of the costs of bid skewing. The initial estimate—which uses the DOT’s ex ante
quantity estimates and corresponds to the winning bidder’s score in our model—is not

2See https://www.mass.gov/service-details/massdot-special-provisions for details.
3See Section E in the Online Appendix (Bolotnyy and Vasserman (2023)) for a detailed discussion.
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TABLE 1
SUMMARY STATISTICS FOR THE 440 MASSDOT BRIDGE PROJECTS AUCTIONED, 1998-2015.

Statistic Mean St. Dev. Pctl(25) Median Pctl(75)
Project Length (Estimate) 1.53 years 0.89years  0.88years  1.48years 2.01 years
Project Value (DOT estimate) $2.72 million $3.89 million  $981,281  $1.79 million $3.3 million
# Bidders 7 3 4 6 9

# Types of Items 68 37 37 67 92

Net Overcost (DOT quantities) —$286,245  $2.12 million —$480,487 —$119,950 $167,933
Net Overcost (Ex post quantities) —$26,990  $1.36 million —$208,554 $15,653 $275,219
Percent Overcost (Ex post quantities) 8.46% 36.14% —12.35% 1.67% 23.28%
Extra Work Orders 298,796 295,173 78,775 195,068 431,188

necessarily representative of the payments that the bidder expects upon winning. Sophis-
ticated bidders anticipate changes from the initial DOT estimates, and bid accordingly to
maximize their ex post payments. As such, a more appropriate metric is to compare the
amount that was ultimately spent in each project against the dot product of the DOT’s
unit cost estimates and the actual quantities used. This is presented in dollars in the “Net
Overcost (Ex post quantities)” row of Table I, and in percent of the final cost paid out in
“Percent Overcost (Ex post quantities)”.* The median overpayment by this metric is about
$15,000 (1.67%), but the 25th and 75th percentiles are about —$210,000 (—12.35%) and
$275,000 (23.28%). Figure 1 shows the spread of overpayment across projects. As we will
show in our counterfactual section, the distribution of overpayment corresponds to the
potential savings from the elimination of risk.

Bidder Characteristics. There are 2883 unique project-bidder pairs (i.e., total bids sub-
mitted) across the 440 projects that were auctioned off. There are 116 unique firms that
participate, albeit to different degrees. We divide them into two groups: “common” firms,
which participate in at least 30 auctions within our dataset, and “rare firms,” which partic-

Count

$4.000,000 $2,000,000 $2,000,000 $4,000,000

Overrung(Dollars)

FIGURE 1.—Net overcost (ex post quantities) across bridge projects.

“Note that the average “Percent Overcost (Ex post quantities)” in Table I is the average percent of costs,
rather than the ratio of the average net overcost to average total cost.
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TABLE II
COMPARISON OF FIRMS PARTICIPATING IN <30 VS. 30+ AUCTIONS.

Common Firm Rare Firm
Number of Firms 24 92
Total Number of Bids Submitted 2263 620
Mean Number of Bids Submitted Per Firm 94.29 6.74
Median Number of Bids Submitted Per Firm 63.0 2.5
Total Number of Wins 351 89
Mean Number of Wins Per Firm 14.62 0.97
Median Number of Wins Per Firm 10 0
Mean Bid Submitted $2,774,941 $4,535,310
Mean Ex post Cost of Bid $2,608,921 $4,159,949
Mean Ex post Overrun of Bid 9.7% 21.97%
Percent of Bids on Projects in the Same District 28.19% 15.95%
Percent of Bids by Revenue Dominant Firms 51.67% 11.80%
Mean Specialization 24.44 2.51
Mean Capacity 10.38 2.75
Mean Ultilization Ratio 53.05 25.50

ipate in fewer than 30 auctions. We retain individual identifiers for each of the 24 common
firms, but group the 92 rare firms together for the purposes of estimation. Common firms
constitute 2263 (78%) of total bids submitted and 351 (80%) of auction victories.

Although there is little publicly available financial information about them, the firms
in our data are by and large relatively small, private, family-owned businesses. Table II
presents summary statistics of the two firm groups. The mean (median) common firm
submitted bids to 94.29 (63) auctions and won 14.62 (10) of them. The mean total bid
(or score) is about $2.8 million, while the mean ex post DOT cost implied by the firm’s
unit bids is $2.6 million. The mean ex post cost overrun is 9.73%. By contrast, the mean
(median) rare firm submitted bids to 6.74 (2.5) auctions and won 0.97 (0) of them. The
mean total bid and ex post scores are quite a bit larger for rare firms—$4.5 million and
$4.2 million, respectively. This is reflected in a substantially larger ex post overrun: 21.97%
on average.

In addition to the firm’s identity, there are a number of factors that may influence its
competitiveness in a given auction. While we do not consider a structural interpretation
for these factors in our model, we treat them as characteristics that help explain hetero-
geneity in costs and risk aversion across auctions and firms. One such factor is the firm’s
distance from the worksite. Although we do not observe precise locations for each project,
we observe which of the six geographic districts under MassDOT jurisdiction each project
belongs to, as well as the location of each bidder’s headquarters. Using this, we proxy for
distance by assigning each project-bidder pair an indicator for whether the project is lo-
cated in the same district as the bidder’s headquarters. Among common firms, 28.19% of
bids were on projects that were located in the same district as the bidding firm’s head-
quarters. By contrast, only 15.95% of bids among rare firms were in matching districts.

Another factor is specialization or experience with a particular type of project. We cal-
culate the specialization of a project-bidder pair as the share of auctions of the same
project type that the bidding firm bid on within our data set. Our data involve three
project types, according to DOT taxonomy: Bridge Reconstruction/Rehabilitation, Bridge
Replacement, and Structures Maintenance. The mean specialization of a common firm is
24.44%, while the mean specialization of a rare firm is 2.51%. As projects have varying
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sizes, we compute a measure of specialization in terms of project revenue as well. We
define a revenue-dominant firm (within a project-type) as a firm that has been awarded
more than 1% of the total money spent by the DOT across projects of that project type.
Among common firms, 51.67% of bids submitted were by firms that were revenue dom-
inant in the relevant project type; among rare firms, the proportion of bids by revenue
dominant firms is 11.8%.

A third factor of competitiveness is each firm’s capacity—the maximum number of
DOT projects that the firm has ever had open while bidding on another project—and
a fourth factor is its utilization—the share of the firm’s capacity that is filled when it is
bidding on the current project. We measure capacity and utilization with respect to all
MassDOT projects recorded in our data—not just bridge projects. The mean capacity is
10.38 projects among common firms and 2.75 projects among rare firms. This suggests
that rare firms generally have less business with the DOT, either because they are smaller
in size, or because the DOT constitutes a smaller portion of their operations. The mean
utilization ratio, however, is 53.05% for common firms and 25.5% for rare firms. This
suggests that firms in our data are likely to have ongoing business with the DOT at the
time of bidding and are likely to have spare capacity during adjacent auctions that they
did not participate in. While we do not model dynamic considerations regarding capacity
constraints directly, we find our measure of capacity to be a useful metric of the extent of
a firm’s dealings with the DOT, as well as of its size.

Quantity Estimates and Uncertainty. As we discuss in Section 8, scaling auctions miti-
gate DOT costs by enabling risk-averse bidders to insure themselves against uncertainty
about the item quantities that will ultimately be used for each project. The welfare bene-
fit is particularly strong if the uncertainty regarding ex post quantities varies across items
within a project, and especially so if there are a few items that have particularly high
variance. When this is the case, bidders in a scaling auction can greatly reduce the risk
that they face by placing minimal bids on the uncertain items (and higher bids on more
predictable items).

Our data set includes records of 2985 unique items, as per MassDOT’s internal taxon-
omy. Spread across 440 projects, these items constitute 29,834 unique item-project pairs.
Of the 2985 unique items, 50% appear in only one project. The 75th, 90th, and 95th per-
centiles of unique items by number of appearances in our data are 4, 16, and 45 auctions,
respectively.

For each item ¢, in every auction, we observe the quantity with which the DOT predicted
it would be used at the time of the auction—g¢¢ in our model—the quantity with which the
item was ultimately used—g?—and a DOT engineer’s estimate of the market rate for
the unit cost of the item. The DOT quantities are typically inaccurate: 76.7% of item
observations in our data had ex post quantities that deviated from the DOT estimates.

Figure 2(a) presents a histogram of the percent quantity overrun across item observa-
tions. The percent quantity overrun is defined as the difference of the ex post quantity
of an item observation and its DOT quantity estimate, normalized by the DOT estimate:

q'aq;eq? x 100. In addition to the 23.3% of item-project observations in which quantity over-

runs are 0%, another 18% involve items that are not used at all (so that the overrun
is equal to —100%). The remaining overruns are distributed more or less symmetrically
around 0%.

Ex post deviations from DOT quantity estimates are caused by a number of different
mechanisms. Some deviations arise from standard procedures. For instance, as ex ante
DOT estimates are used for budgeting purposes, there may be reason for adjusting the
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FIGURE 2.—Descriptives of quantity overruns across items.

quantities of certain items after the design stage. One example is concrete, which is heavily
used, has quantities that are difficult to predict precisely, and often overruns in our data.
It is also common for the DOT to include certain items that are unlikely to be used at all—
just in case—in order to support its policy of avoiding ex post renegotiation. Prominent
examples of such items include flashing arrows and illumination for night work. While
mechanisms of this sort are largely systemic, there remains a substantial amount of varia-
tion in ex post quantities simply due to the inherent uncertainty entailed in construction.
A large fraction of Massachusetts bridges are structurally deficient, making it difficult to
ascertain the exact severity of their condition prior to construction. Based on our conver-
sations with DOT engineers, qualified bidders are all aware of these mechanisms, and are
generally thought to have better specialized knowledge and quality predictive software
than the DOT.

Quantity overruns often vary across observations of the same item in different auctions.
Figure 2(b) plots the mean percent quantity overrun for each unique item with at least 2
observations against its standard deviation. While a few items have standard deviations
close to 0, the majority of items have standard deviations that are as large or larger than
the absolute value of their means. That is, the percent overrun of the majority of unique
items varies substantially across observations. While this is a coarse approximation of the
uncertainty that bidders face with regard to each item—it does not take item or project
characteristics into account, for example—it is suggestive of the scope of risk in each
auction.

Reduced Form Evidence for Risk-Averse Bid Skewing. As in Athey and Levin (2001)
and Bajari, Houghton, and Tadelis (2014), the bids in our data are consistent with a model
of similarly informed bidders who bid strategically to maximize expected utility. In Fig-
ure 3(a), we plot the relationship between quantity overruns and the percent by which
each item was overbid above the DOT market rate (“blue book”) cost estimate.” We do
this for both the winning bidder and the second place bidder.® The binscatter is residu-

SIn public procurement, the term “blue book” is commonly used to refer to industry standard prices (see,
e.g., https://www.transit.dot.gov/funding/procurement/third-party-procurement/subcontracts).

%The percent overbid of an item is defined as b"—’[”’ x 100, where b, is the bid on item ¢ and ¢, is the DOT
market rate estimate of item ¢. The percent quantity overrun is defined as in Figure 2(a).
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FIGURE 3.—Comparison of item-level overbids by the top two bidders.

alized. In order to obtain it, we first regress percent overbid on a range of controls and
obtain residuals. We then regress percent overrun on the same controls and obtain resid-
uals. Finally, to obtain the slope, we regress the residuals from the first regression on the
residuals from the second. Controls include the DOT estimate of total project cost, the
initially stated project length in days, and the number of participating bidders, as well
as fixed effects for: item IDs, the year in which the project was opened for bidding, the
project type, resident engineer, project manager, and project designer. Specifications that
exclude item fixed effects or include an array of additional controls produce very similar
slopes.” We use a similar procedure for all residualized binscatters in this section.

As Figure 3(a) demonstrates, there is a significant positive relationship between percent
quantity overruns and percent overbids by the winning bidder. A 1% increase in quantity
overruns corresponds to a 0.086% increase in overbids on average. Higher bids on over-
running items correspond to higher earnings ex post. Thus, as higher bids correspond to
items that overran in our data, we conclude that the winning bidder is able to correctly
predict which items will overrun the DOT estimates on average, and to skew accordingly.

Furthermore, Figure 3(a) shows that losing bidders generally skew their bids in the
same direction as winning bidders. With the exception of a few outlying points, the top two
bidders both overbid on items that wound up overrunning on average.® This suggests that
the winning and second place bidder are similarly able to predict overruns. In Appendix E,
we show that this pattern holds for bidders ranked 3 and 4 as well, and that the average
percent overbids in each bin are even closer together when we restrict our comparison
to projects in which the top two bidders submit similar total scores, and thus likely have
similar private costs and risk tolerance.

While our data suggest that bidders do engage in bid skewing, there is no evidence of
total bid skewing, in which a few items are given very high unit bids and the rest are given

"For each graph, we truncate observations at the top and bottom 1% to make the trends easier to see.

8 As Figure 3(a) shows, the top two bidders diverge on items that overran by more than 100% on average.
This is suggestive of moral hazard: the winning bidder profitably bid high on these items, while the losing
bidder bid low on them. To account for this possibility, we bound the impact of moral hazard on our results in
Appendix B.
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“penny bids.” The average number of unit bids worth $0.10 or less by the winning bidder
is 0.51—or 0.7% of the items in an auction. The average number of unit bids worth $0.50,
$1.00, and $10.00, respectively, is 1.68, 2.85, and 13.91, corresponding to 2.8%, 4.73%, and
23.29% of the items in an auction. This observation is consistent with previous studies of
bidding in scaling auctions. While some studies have cited other forces, such as fear of
regulatory rebuke, as alternative explanations for the lack of total bid skewing, others like
Athey and Levin (2001) have argued on the basis of interviews with professionals that risk
management is a primary concern driving this bidding behavior.

The absence of total bid skewing is not the only testable implication of bidders’ risk
aversion. Risk-averse bidders balance the incentive to bid high on items that are projected
to overrun with an incentive to bid close to cost on items that are highly uncertain. As our
model in Section 5 shows, bidders with higher costs and higher scores face larger amounts
of risk from extremal bids. As such, they are less willing to skew strongly or bid far below
cost on items predicted to underrun.

This observation is consistent with the pattern demonstrated in Figure 3(a). Here,
the second place bidder—who submitted a higher overall score by definition—generally
exhibits less severe skewing: a 1% increase in quantity overruns corresponds to only a
0.019% increase in overbids on average. Figure 3(b), which plots a residualized binscatter
of the second place bidder’s unit bid for each item against the winning bidder’s unit bid
for the same item, shows a similar pattern. While the direction of skewing corresponds
strongly between the top two bidders—a higher overbid by the winning bidder corre-
sponds to a higher overbid by the second place bidder as well—the second place bidder’s
skewing is more subdued.

The bids in our data also exhibit more direct evidence of risk aversion. We would expect
risk-averse bidders to bid lower markups on items that—everything else held fixed—have
higher uncertainty. While we do not see observations of the same item in the exact same
context with different uncertainty, we present the following suggestive evidence that such
behavior is occurring. In Figures 4(a) and 4(b), we plot the relationship between the unit
bid for each item in each auction by the winning bidder, and an estimate of the level of
uncertainty regarding the ex post quantity of that item (in the context of the particular
auction). To calculate the level of uncertainty for each item, we use the results of our first-
stage estimation, discussed in Section 6. For every item, in every auction, our first stage
gives us an estimate of the variance of the error for the best prediction of what the ex post
quantity of that item would be, given information available at the time of bidding. In Fig-
ure 4(a), we plot a residualized binscatter of the winning bidder’s absolute percent overbid
on each item against the item’s standard deviation—the square root of the estimated pre-
diction variance. This captures the uncertainty of each item’s quantity prediction across
auctions in which it may appear with different DOT expectations and project composi-
tions. While the exact numbers may vary across projects with different characteristics and
staffing, the types of items that often have the highest or lowest standard deviations are
indicative of the range of uncertainties that bidders face when composing their portfolios.
Items with the lowest standard deviations—such as “control water structure” and “clear-
ing and grubbing”—tend to be used in lumpy units or fractions of a unit, and are unlikely
to depend on unforeseen conditions.” Items with the highest standard deviations—such

“While we do see items for which ¢¢ and ¢“ are typically a single unit, there are many instances in which g*
is a unit, but g* is a fraction (above or below 1). As we cannot cleanly distinguish which items this might apply
to, we model quantities for items with unit ¢¢ in the same way as others. Items with little variation between g¢
and ¢“ are then estimated to have a small variance parameter.
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FIGURE 4.—Measures of item-level overbids against quantity uncertainty.

as various types of fencing, asphalt and excavation—often depend on the scope and the
depth of the maintenance site, and so are more difficult to predict accurately before con-
struction is started.

As Figure 4(a) demonstrates, the relationship between item-level absolute overbids and
standard deviations is negative. This suggests that holding all else fixed, bidders bid closer
to cost on items with higher variance, and thus limit their risk exposure. Note, however,
that this analysis does not directly account for the trade-off between quantity overruns and
uncertainty. Under our model, a bidder’s certainty equivalent increases in the predicted
quantity of each item, but decreases in the item’s quantity variance. To account for this
trade-off, we consider the following alternative metric for bidding high on an item:

byg! aq;
Z b,q, Z ¢q,
p p

%A Revenue Contribution from ¢t = ol x 100.
it

D,
p

This is the percentage difference in the proportion of the total revenue earned by the
winning bidder from item ¢, and the proportion of the DOT’s initial total cost estimate
that item ¢ constituted. We take the percent difference between the item’s revenue con-
tribution to the bidder and its cost contribution to the DOT’s total estimate in order to
normalize across items that inherently play a bigger or smaller role in a project’s total
cost. In Figure 4(b), we plot the residualized binscatter of the %A Revenue Contribution
due to each item against the item’s quantity standard deviation. The negative relationship
here is particularly pronounced, providing further evidence that bidders allocate propor-
tionally less weight in their expected revenue to items with high variance. Our model of
risk-averse bidding predicts exactly this kind of relationship.
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5. ASTRUCTURAL MODEL FOR BIDDING WITH RISK AVERSION

In this section, we present the theoretical framework underlying our empirical exercise.
We present a parsimonious model of risk-averse bidding in a scaling auction and charac-
terize the optimal spread of unit bids across project components under mild assumptions
about the distribution of bidder types and bidder beliefs about their competitors. In Sec-
tion 8, we augment this characterization with a model of endogenous participation and
score selection under an IPV framework motivated by the estimates in Section 7.

The bidding stage of a procurement auction consists of N qualified bidders who com-
pete for a contract to complete a single construction project. A project is characterized
by the T items listed in the DOT project specification. Prior to bidding, bidders observe
a DOT estimate ¢¢ for each item #’s quantity, as well as an additional noisy public sig-
nal ¢°. Although we do not model this explicitly until Section 6, the public signal should
be thought of as a refinement of g; that incorporates further public information, such as
the identity of the design engineer and historical trends for similar projects. Upon com-
pletion of construction, the actual quantity g¢ of each item is realized, independently of
which bidder won the auction and at what price. To summarize, there are three kinds of
quantity objects:

e q°=(q;,...,q%): DOT estimates based on underlying conditions at the project site
e ¢"=(q},...,q%): Common refined estimates based on public information
e q'=(q{,...,q%): Actual quantities, realized ex post independently of the auction.

To compete in the auction, each bidder i must submit a unit bid b,; for every item
t involved in the auction. Bids are simultaneous and sealed until the conclusion of the
auction. To determine a winner, each bidder i is given a score equal to the sum of her unit
bids weighted by the DOT quantity estimates: s; = Zle b, ;q¢. The bidder with the lowest
score wins the contract and executes the project in full. Once the project is complete, the
winning bidder is paid her unit bid b, ; multiplied by the actual quantity of item ¢ that was
needed, g/.

Bidder Efficiency. The winner of a procurement auction is responsible for securing
all of the items required to complete construction. The majority of these items—such as
concrete and traffic cones—are standard, competitive goods that have a commonly known
market unit cost ¢, at the time of the auction. However, bidders differ in their labor,
storage, and transportation costs across different projects. To capture this, we assume that
bidders differ along a single-dimensional efficiency multiplier . That is, for every item ¢
required for a project, bidder i faces a unit cost of «;c,, where «; is the bidder’s efficiency

type.

Uncertainty and Risk Aversion. Bidders’ expectations for how many units of different
items will be needed for a project are noisy to different degrees. For tractability, we as-
sume that the bidders’ public signal for each item ¢ is normally distributed around the
actual quantity of ¢, with an item-specific variance parameter:

g, =q +¢€, wheree, ~N(0,07). M

In addition, we assume that bidders are risk averse with a standard CARA utility function
over earnings from the project and a private constant coefficient of absolute risk aversion

Yi:
u(m)=1-—exp(—y;m). 2)
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Timing and Information. Prior to the auction, all bidders observe the market cost ¢,
DOT estimate g°, public signal ¢°, and variance o7 for each item. Bidders’ private types
(@, ;) are drawn independently from a publicly known distribution over a compact sub-
set [a, @] x [y, ¥] of R2. Before submitting her bid, each bidder observes her private type
as well as the number of competitors that are participating in the auction.

Bidder Payoffs. 1f a bidder loses the auction, she does not pay or earn anything regard-
less of her bid. If bidder i wins the auction with bid vector b;, she profits the difference
between her unit bid and her unit cost for each item, multiplied by the quantity with which
the item is ultimately used: ZL q! - (b,; —a;c,). As the realization of q“ is unknown at the
time of bidding, bidders face two sources of uncertainty in bidding: uncertainty about their
probability of winning and uncertainty about the profits they would earn upon winning.
In addition, the winning bidder may anticipate earning an additional lump sum payment
&—such as an extra work order (EWO)—that does not depend on bids or quantities.
Combining these components, bidder i’s expected utility from participating in the auction

is given by
(1 —Eq |:exp(—y,« <§ + Zq;’ (b — CM:)))])

Expected utility conditional on winning with b;

x (Pr{b;-q° <s;forall j#i}).

Probability of winning with b;

This is bidder i’s expected utility from the profit she would earn if she were to win the
auction, multiplied by the probability that her score—at the chosen unit bids—will be the
lowest one offered, so that she will win. Substituting the bidders’ Gaussian signal from
Equation (1) and taking the expectation, bidder i’s expected utility is given by

(1 — exp <_7’i (f +Y gl (b — aic) — %'foz (bur = aiCt)2>>) ¥

t=1

x (Pr{b; - q° <s; for all j # i}). 4)

Separability of the Bidder’s Problem. Notably, bidder i’s expected utility from partici-
pating in the auction is separable in the following two ways. (i) The probability that bidder
i will win (Equation (4)) is entirely determined by the score s; = b; - q° and the distribu-
tion of competing scores. Thus, any selection of unit bids that sums to the same score
yields the same probability of winning. (ii) The expected utility conditional on winning for
bidder i (Equation (3)) depends only on the selection of unit bids submitted by i, and is
independent of any other bidder’s bids.

The separability property implies that a bidder’s score is payoff-sufficient for her choice
of unit bids: in any equilibrium, the vector of unit bids submitted by each bidder must
maximize the bidder’s expected utility from winning, conditional on the constraint that
the unit bids sum to the bidder’s equilibrium score.!® This maximization—which we call

10This condition is guaranteed to hold in any equilibria where every type of bidder has a nonzero chance of
winning the auction. As such, it will hold in every symmetric equilibrium, but does not require symmetry.



SCALING AUCTIONS AS INSURANCE 1221

the bidder’s portfolio problem—is a deterministic unilateral optimization problem: it does
not depend on the bidder’s beliefs about her competition. Instead, all equilibrium con-
siderations are channeled through the bidder’s choice of her equilibrium score, which
disciplines the portfolio problem through a linear constraint on feasible unit bids.

Characterizing Equilibrium. As bidder types are multidimensional, it may not be pos-
sible to specify a unique equilibrium in scores without further assumptions. However, by
Reny (2011), there exists a monotone pure strategy equilibrium characterized by the solu-
tion to the following two-stage problem when the support of feasible scores is sufficiently
high.!! In the first stage, each bidder i chooses a score s*(a;, ;) based on her private type
(a;, ;). This determines the bidder’s probability of winning and constrains the second
stage of her bidding strategy. In the second stage, bidder i chooses a vector of unit bids b;
that solves her portfolio problem, subject to the constraint that b; - q° = s* (e, ;).

In order for the bids to constitute an equilibrium, b; must maximize bidder i’s expected
utility conditional on winning subject to the score constraint. This optimization problem
is strictly convex, and so it has a unique global maximum for any given score. Further-
more, applying a monotone transformation to Equation (3), this problem reduces to a
constrained quadratic program, similar to those studied in standard asset pricing texts:'?

T 2
;O
bi(s) = argn})?x[ El g’ (b, — aic;) — yz’ (bri — a,-c,){|
=

T
st. ) bugi=s and b,;>0 forallrz. 6)

t=1

As unit bids cannot be negative, the portfolio problem in Equation (5) does not have a
closed-form solution, and must be solved numerically. However, the optimal unit bid for
each item receiving positive weight in the portfolio has the following form:

b 2 e 2 b 2
b =aa+ T BT (s S glag+ PIE]) @

Yi Z |: (qf)2i| r:b:i(s)>0 Vi
2

r:b’rii(s)>0 r

Note that the optimal bid for each item is not only a function of that item’s own unit cost
and expected quantity-to-variance ratio, but also of the costs, expectations, and variances
of the other items receiving positive weight in the optimal portfolio—as well as the bid-
der’s score. As such, variation in the composition of project needs and uncertainty would
induce variation in unit bids even if the competitive structure (e.g., the participating bid-
ders and the distribution of their private costs) were the same. This variation is the driver
of our identification strategy for estimating bidder cost efficiency and risk-aversion types.

Discussion. It is worth pausing to highlight where our model imposes strong restric-
tions on bidder responses to uncertainty, and where it does not. A key assumption of our
model is that item quantity realizations are (i) fully exogenous and (ii) equally anticipated

"'We restrict attention throughout to Bayes-Nash equilibria; see Appendix C.1 for details.
12See Campbell (2017) for a survey.
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by all bidders. We motivate this assumption in two ways. First, as we noted in Section 3,
onsite MassDOT managers—and not contractors—are the primary parties responsible
for updating item quantity needs. Second, not only the top two, but all bidders skew their
bids in the same direction on average. For instance, Figure E.1(b) in Appendix E shows
that the relationship of overbids by bidders of rank 2, 3, and 4 relative to those of the win-
ning bidder all have nearly the same slopes. Still, this assumption shuts down two channels
of potential inefficiency from scaling auctions. First, it does not allow for “moral hazard”
(Laffont and Tirole (1993)), by which winning bidders overuse items that they had bid
high on. Second, it does not allow for a “winner’s curse” (Milgrom and Weber (1982)), by
which winning bidders may be adversely selected based on their optimism about quantity
realizations. Toward the first concern, we consider an extension of our model with moral
hazard in Appendix B. However, we acknowledge the second concern as a limitation of
our current work.

On the other hand, our model is flexible with respect to the distribution of bidder types,
and additional payments that are not directly bid upon. Our characterization of optimal
unit bids does not impose any structure on the correlation between a bidder’s efficiency
type «; and her risk-aversion type vy;. While different distributions of « and y may al-
low for different mappings of bidder types to equilibrium scores, Equation (6) uniquely
characterizes the mapping of bidder types to unit bids for each score across all such equi-
libria. In Section 6, we take advantage of this observation to estimate bidder types in each
auction and find that « and vy are strongly positively correlated. Similarly, while many
other auction-level considerations—both observed and unobserved—may shape the ways
in which equilibrium scores are determined, these considerations do not affect the valid-
ity of Equation (6) so long as unit-level costs and quantity expectations are unaffected.
As such, our estimation procedure for « and vy is agnostic to bidders’ expectations over
EWO payments and entry costs—features that we calibrate under a more stylized model
in Section 8.

6. ECONOMETRIC MODEL

We now present a two-step estimation procedure to estimate the primitives of our base-
line model. We split our parameters into two categories: (1) statistical/historical parame-
ters, which we estimate in the first stage and (2) economic parameters, which we estimate
in the second stage. The first set of parameters characterizes bidders’ beliefs over the dis-
tribution of actual quantities. The estimation procedure for this stage employs the full
history of auctions in our data to build a statistical model of bidder expectations using
publicly available project and item characteristics. However, it does not take into account
information on bids or bidders in any auction. The second-stage estimates bidders’ ef-
ficiency types « and risk-aversion parameters vy in each auction. For this stage, we take
the first-stage estimates as fixed and construct moments for GMM estimation based on
idiosyncratic deviations between observed unit bids and optimal unit bids given by Equa-
tion (6).

Stage 1: Estimating the Distribution of the Quantity Signals. In the model presented in
Section 5, we did not take a stance on what the signals in Equation (1) are based on. The
reason for this was to emphasize the flexibility of our model with respect to possible signal
structures: the only assumption used is that—conditional on all of the information held
at the time of bidding—the bidders’ common belief of the posterior distribution of each
q¢ can be approximated by a Gaussian distribution with a commonly known mean and
variance.
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For the purpose of estimation, however, we make an additional assumption. Denoting
an auction by n, we assume that the posterior distribution of each gy, is given by a statisti-
cal model that conditions on ¢ ,, item characteristics (e.g., the item’s type classification),
observable project characteristics (e.g., the project’s location, project manager, designer,
etc.), and the history of DOT projects.”® In particular, we model the realization of the
actual quantity of item ¢ in auction # as

4!, =4q.,+ M wheren,, ~N(0,07,) (7)
such that g, = Bo.,q;, + By X.n and o, =exp(Bo.oq,, + BoXin)- (8)

Here, 7, is the predicted mean of ¢/, and o,, is the square root of its predicted
variance—linear and log-linear functions of the DOT estimate for item #’s quantity q; .
and a vector of item-project characteristics X, ,. We estimate this model with Hamllto—
nian Monte Carlo and use the posterior mean of the post-warmup draws, denoted by 01,
as a point estimate for the second stage of estimation. We summarize the estimates of 6,
and demonstrate the goodness-of-fit in Appendix D.

Note that our model allows for correlations between item means g7, and variances o7,
through observables, but assumes that deviations 7,, from the means are independent
across items within an auction. This is not a binding constraint from a theoretical per-
spective: in principle, our approach could accommodate correlations across 7, , as well.
However, in contrast to the asset pricing literature, each observation of a “portfolio” in
our data is composed of a different basket of items. As such, it would be difficult to iden-
tify and estimate consistent correlations across items in our setting.

Our model of bidder quantity signals can be thought of in several ways. It can be inter-
preted as an additional component of the structural model: the bidders use our method
as a statistical estimation procedure to assess the likelihood of item quantities prior to
bidding. The DOT quantities, item, and project characteristics are indeed all publicly
known at the time of bidding, as are historical records of DOT projections and ex post
quantities. Furthermore, there is a mature industry of software for procurement bid man-
agement that touts sophisticated estimation of project input quantities and costs. It is thus
likely that firms use similar off-the-shelf tools to forecast project needs. Alternatively, this
assumption could be thought of as the econometrician’s model of each signal mean ¢°
and variance o?.

Stage 2: Estimating Efficiency Types and Risk Aversion. Our data set contains a unit
bid for every item submitted by every participating bidder in each auction in our sam-
ple. Every auction carries a different set of project characteristics, a different composi-
tion of items to be bid, different quantity expectations and variances, and a different set
of participating bidders who may have different concurrent advantages in efficiency and
risk aversion. These features collectively determine the optimal unit bid for every item-
bidder-auction (¢, i, n) observation in our sample. In order to estimate the bidder types
underlying each portfolio of unit bids, we make two main assumptions. First, we assume
that the optimal unit bid for item # by bidder i in auction # is determined by the formula
in Equation (6), given the predicted quantity means g, and variances &;, from our first
stage, and a bidder-auction efficiency «;, and risk-aversion v;, parameter Second, we
assume that the optimal bid for each (¢, i, n) tuple, evaluated at the equilibrium score s},

3We index auctions and projects interchangeably with .
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is observed by the econometrician with an idiosyncratic mean-zero measurement error.
We summarize these assumptions as follows.

ASSUMPTION 1: Let b{,, denote the unit bid for item t submitted by bidder i in auc-
tlon n, as observed in our data. Each observed unit bid is equal to the optimal bid
by (st n|01, Qins Yin), Subject to an IID mean-zero measurement error v, ;

bd

t,i,n

=b*

1, n( Zn|01, Ajp, ’)/i,,,) + Viin where E[Vt,i,n] =0 and Vt,i,nJ—Xt,na Xi,n: Xn.

Assumption 1 states that the optimal unit bid for each (¢, i, n) is observed in our data
with an idiosyncratic error that is independent across draws, and orthogonal to auction-
item, auction-bidder, and auction-wide characteristics. We interpret these errors as mea-
surement or rounding errors: the results of rounding or smudging in the translation be-
tween the bidder’s optimal bidding choice and the record available to the DOT.

Note that while we do not directly observe the equilibrium score s, for each (i, n) pair,
our observations of unit bids provide a noisy signal of it: s/, = >, b¢, q¢,, =8, + Vins
where E[v;, - X;,] = 0 by Assumption 1. As we discussed in Section 5, s7, is a suffi-
cient statistic for bidder i’s competitive considerations in auction n. As such, our formula
for b}, , accounts for bidders’ beliefs about their opponents through s7,, and explains the
remdual systematlc variation in unit bids through the weights that bidders’ efficiency and
risk-aversion parameters place on items with different balances of expected quantities
and uncertainty.

The intuition for identification is as follows: given the estimates of the ﬁrst -stage pa-
rameters 91, the formula for b* , can be written as a linear projection of «; ,, - — and 57

Under Assumptlon 1, the Vector of observed bids b¢;  can therefore be expressed as a sys-
tem of regression equations with «;, and v, , as the coefﬁments of observed weights that
capture the relative value, in terms of cost and uncertainty respectively, of bidding higher
on each item (¢, i, n) within bidder i’s portfolio in auction », and an orthogonal residual
term. The vector of «;, and v; , is thus identified by the orthogonality of bid residuals with
respect to the (¢, i, n) characteristics defining each item’s weights, as in a standard OLS
setting.

Because our characterization of optimal bids does not require assumptions on the dis-
tribution of bidder types, we allow both «;, and y;, to vary flexibly at the bidder-auction
level. Variation in «;, reflects differences in bidder size, capacity at the time of bidding,
and specialization for the particular project at hand. For instance, if a bidder’s headquar-
ters is closer to the project site, her transportation costs for all of the items involved will
be lower than for an equivalent project further away. Variation in vy; , reflects a CARA ap-
proximation of bidders’ risk aversion with respect to the stakes involved in each auction.
This can differ across bidders with different financial situations and may covary with time
and with bidders’ capacity. To capture these relationships parsimoniously in our limited
sample, we project «;, and v;, onto a bidder fixed-effect and a vector of bidder-auction
characteristics X;,. This specification imposes a correlation between the efficiency and
risk aversion of each bidder-auction through realizations of the characteristics X ,. How-
ever, the correlation may, in general, take on different signs and vary across types of
bidders and auctions.

To estimate our second-stage parameters efficiently, we apply a GMM procedure lever-
aging the orthogonality of the bid-level residuals implied by Assumption 1. Each mo-
ment condition corresponds to the weighted expectation of residuals across a fixed slice
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FIGURE 5.—Descriptives of parameter estimates from the first and second stage.

of bidder-auction pairs in a sample of auction draws that asymptotically approaches infin-
ity. We describe identification and estimation for the first- and second-stage parameters in
detail in Appendix C.3.1 and Appendix C.3.2, respectively. In Appendix C.3.3, we discuss
robustness to unobserved auction heterogeneity.

7. ESTIMATION RESULTS

Our structural estimation procedure consists of two parts. In the first stage, we estimate
the distribution of the ex post quantity of each item conditional on its item-auction char-
acteristics using Hamiltonian Monte Carlo sampling. We present parameter estimates for
the regression coefficients underlying the predicted quantity g7, and variance o;, terms
in Table D.I in Appendix D. In addition, we demonstrate the model fit for the ﬁrst stage
in Figure D.1. A histogram of the standard deviation estimates &, , themselves is plotted
in Figure 5(a). Prior to estimation, all item quantities were scaled so as to be of compara-
ble value between 0 and 10. As demonstrated in the histogram, the majority of standard
deviation terms are between 0 and 3, with a trailing number of higher values.

In the second stage, we estimate an efficiency type «;,, and CARA coefficient v; , for ev-
ery bidder-auction pair in our data using the GMM estimator presented in Section 6. We
summarize the results in Tables III and I'V. Bootstrapped standard errors and confidence
intervals are presented in Table D.II in Appendix D.

In Table III, we present summary statistics of our estimates of bidder-auction risk aver-
sion and efficiency types. The median coefficient of risk-aversion ¥;, is estimated to be
0.061 when dollar values are scaled by $1000. An individual with this level of risk aver-
sion would require a certain payment of $30 to accept a 50-50 lottery to either win or
lose $1000 with indifference, and $2878 to accept a 50-50 lottery to win or lose $10,000.'
The median efficiency type «;, is estimated to be 1.053. An efficiency of 1 would suggest
that the bidder faces costs exactly at the rates represented by MassDOT’s estimates. Our

It is not unusual for managers to exhibit high levels of risk aversion at high stakes. For instance, a McKinsey
survey of 1500 managers found that most required a certainty equivalent of $328M to accept a risk of losing an
investment worth $100M (LovalloKollerUhlanerKahneman (2020)).
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TABLE III
SUMMARY STATISTICS OF ¥;, AND «;, ESTIMATES BY PROJECT TYPE.

Project Type Mean SD 25% Median 75%
Vin

All 0.088 0.083 0.042 0.061 0.096

Bridge Reconstruction/Rehab 0.088 0.082 0.046 0.062 0.098

Bridge Replacement 0.080 0.082 0.041 0.056 0.079

Structures Maintenance 0.100 0.084 0.043 0.075 0.129
Qjn

All 1.033 0.22 0.953 1.053 1.175

Bridge Reconstruction/Rehab 1.085 0.231 0.978 1.095 1.275

Bridge Replacement 1.044 0.214 0.949 1.058 1.206

Structures Maintenance 0.985 0.213 0.941 1.030 1.110

results thus suggest that the material costs for the median bidder-auction are 5% higher
than the DOT’s estimates.

However, there is substantial heterogeneity across bidders and projects. While the me-
dian risk-aversion parameter among bridge replacement projects would require a certain
payment of $2665 to accept a lottery for $10,000 (or $28 to accept a 50-50 lottery for
$1000), the median among structures maintenance projects would require a certain pay-
ment of $3444 for the same lottery (or $37 for a 50-50 lottery for $1000). Looking across
project types, the 25th percentile (75th percentile) of bidder-auction risk-aversion pa-
rameters across project types would require a certain payment of $20 ($48) to accept a
50-50 lottery for $1000 or $2041 ($4205) to accept a lottery for $10,000. There is also sub-
stantial heterogeneity in cost efficiency. For instance, the 25th-percentile bidder across
project types has an auction-specific cost multiplier of 0.953, suggesting that she obtains
costs that are 5% lower than the DOT cost estimates, while the 75th-percentile bidder
has costs about 17.5% higher than the DOT cost estimates.

Our estimates allow us to examine the relationship between bidders’ cost efficiency
and risk aversion. Figure 5(b) plots a binscatter of estimated efficiency types «;, against
their corresponding CARA parameters ¥; ,. To smoothly control for heterogeneity across
auctions, we first take the log of 7; , and demean each estimate by subtracting the auction-
level average @;, and log(%;.,), respectively. To make the binscatter easier to read, we
then add back the cross-auction average «; , and log(¥; ,) to each value, and exponentiate
10g(¥in)-

As the figure shows, @;, and ¥;, are strongly positively correlated. The corresponding
log-linear regression suggests that a 10-percentage point increase in @;, corresponds to a
20% increase in ¥;, after accounting for auction-level fixed effects. That is, a bidder who
is 10% less efficient is also 20% more risk averse. Moreover, ¥;, is well predicted by a
monotonic function of @; ,. The log-linear fixed effects regression above explains 80% of
the variation in ¥;, across bidder-auction pairs. In Section 8, we build on this relation-
ship to project bidder efficiency and risk aversion onto a single-dimensional metatype for
counterfactuals.

In Table IV, we summarize the distribution of ex post markups implied by our estimates
of @; ,,. The markup for bidder i in auction 7 is given by the total ex post profit that the
bidder would obtain from completing the project given her bids, normalized by her total
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TABLE IV
SUMMARY STATISTICS OF MARKUP ESTIMATES BY NUMBER OF PARTICIPATING BIDDERS.

Estimated Bidder Markups

Num Bidders in Auction Mean SD 25% Median 75%
All 21% 49% —-9% 10% 36%
2-3 Bidders 41% 76% 0% 18% 54%
4-6 Bidders 26% 58% —6% 13% 40%
7+ Bidders 16% 39% —10% 7% 31%
cost:

Z q?,n ’ (bt,i,n - ai,nct,n)
t
Zqin : (ai,nct,n)
t

The median estimated markup in our sample is 10% and the mean is 21%. Rather than
summarize estimated markups by project type, we split projects by the number of partic-
ipating bidders in each auction. Although there is substantial heterogeneity within each
group, markups are generally decreasing with the amount of competition. Note that this
markup measure does not account for extra work orders, as our baseline model does not
identify the cost of fulfilling them. While this may help explain why some of the markup
estimates on the lower tail are negative, it does not imply that our parameter estimates
are biased. Any additional payments that may have been anticipated at the time of bid-
ding would have influenced the bidders’ choice of equilibrium score. However, because
these payments were not bid upon, their presence would not change the solution to the
bid portfolio optimization problem conditioned on the equilibrium score that is observed
in our data.

We defer a demonstration of the goodness-of-fit of our structural model to Appendix D.
Figure D.2(a) presents a scatterplot and Figure D.3(a) presents a quantile-quantile plot,
both of the unit bids predicted by our model against the unit bids observed in our data.
While the bid predictions are not perfect, the correspondence between predictions and
data is quite good. Figure D.2(b) presents a regression analysis of the predictiveness of
our model fit on the observed data. Our model fit predicts data bids with an R-squared of
0.881.

Markup =

8. COUNTERFACTUALS

In Section 4, we argued that the bids observed in MassDOT bridge procurement auc-
tions are suggestive of risk aversion. In Sections 5 and 6, we showed that under risk aver-
sion, observations of unit bids alone could be used to identify parameters for bidder ef-
ficiency and risk aversion, independently of strong assumptions about the competitive
environment. In this section, we quantify the levels of risk and risk aversion exhibited in
these auctions and evaluate the effectiveness of several counterfactual policies to lower
DOT costs.

In order to evaluate counterfactual equilibrium outcomes, we require further assump-
tions about the strategic environment facing bidders. In estimating bidder-type parame-
ters, we interpreted the scores submitted by bidders in our data as equilibrium outcomes.
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We were able to remain agnostic about how the scores came about because portfolio
optimization, subject to a given score, is unaffected by other bidders’ behavior. How-
ever, if the auction format were to change, the scores—and perhaps even the bidders who
participate—would likely change in equilibrium.

In order to account for such changes, we consider a stylized model of bidder beliefs and
participation decisions. Leveraging our observation that estimated risk-aversion types are
well approximated by a monotonically increasing function of efficiency types within an
auction, we model bidder-auction types («;,, ¥:,) as deterministic increasing transfor-
mations of a private single-dimensional metatype ;, that is drawn independently from
a commonly known distribution for each potential bidder in each auction. To allow for
endogenous changes in the set of participating bidders, we adopt a model of selected en-
try in the spirit of Samuelson (1985). Using this model, we calibrate the entry costs and
extra work order (EWO) expectations that best rationalize the observed rates of entry in
our data. We then compute equilibrium entry and bidding strategies under each counter-
factual policy, and compare the resulting expected DOT expenditures to the status quo
policy.

Timing, Beliefs, and Endogenous Entry. Each auction has a limited set of potential bid-
ders who may consider submitting a bid. For simplicity, we assume that bidders who bid
on an auction within the same project type, geographic region, and year could have par-
ticipated in any other such auction.” We assume that all potential bidders consider one
auction at a time and know the number and type distribution of their potential competi-
tors.

Bidder types vary across auctions through a combination of bidder-auction character-
istics. For simplicity, we project these characteristics onto a single-dimensional metatype
T..n, Such that for each auction n, each potential bidder i’s efficiency type «,(7;,) and
risk-aversion type v,(7;,) are fully determined by the realization of ;,. We assume that
metatypes 7;, are drawn IID from a common auction-specific distribution with CDF F,
that is calibrated by fitting to the estimates from Section 7, as described in Appendix A.

The timing of bidding is as follows. Once an auction # is advertised, all potential bidders
observe their types (a,(7:,), ¥.(7:,)) and evaluate whether they would like to participate.
Preparing a bid in order to participate is costly. We assume that all bidders who choose to
enter an auction » incur a common entry cost k,, regardless of whether they win. Once
participation decisions are realized, the number of bidders who paid the entry cost is
publicized and each participating bidder submits a vector of unit bids and a corresponding
total score. The bidder with the lowest total score is awarded the contract and fulfills it in
full, incurring all fulfillment costs. Upon completion of the contract, the winning bidder is
reimbursed per unit of each item that is ultimately used according to her unit bid for that
item, along with a fixed payment for any EWOs that were needed.

Equilibrium Bidding Strategies. Following the literature (Athey, Levin, and Seira
(2011), Roberts and Sweeting (2013)), we construct a type-symmetric equilibrium in
monotone pure strategies in three stages. In the first stage, all types 7;,, below a thresh-
old 7! enter the auction. For this to be an equilibrium, every type 7;, < 7 must expect a

150ur definition of potential bidders is similar to that of Kong (2020). The maximum number of potential
bidders is 20, while five auctions were grouped alone and excluded; see Appendix C.4 for details.
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positive value V;(7;,) from participating in the auction:

ACHEDY (Anf - 11> Fu(m)" " (1 = Fu(72)) " "BUL(s: () [ Any ks m), — (9)

m=1

where F,(7*) is the probability that an independent draw of a competing potential bid-
der’s type is below 7¢ and EU, (s%(7;,)|As, kn, m) is the expected utility that the bidder
expects to earn under her equilibrium bidding strategy s:(r;,) if m — 1 competing bid-
ders participate. The marginal type 7} expects to earn no profit, and so equilibrium entry
probabilities are defined by the equation V,(7%) = 0.

In the second stage, the bidder observes the number of competing bidders and chooses
her equilibrium strategy s:(7;,) so as to maximize her expected utility from participating
in the auction. Building on the discussion in Section 5, the expected utility EU,,(s|7;,) for
a given score s submitted by a bidder with type 7;, is given by

[1— exp(=7u(7in) - [CE (b}, (5)|7in) + Ay - EWO, — &, ])] x [ [[1 = Hyn(5)]
J#

n [1 _ exp(‘yn(’fi,n) . Kn)] x (1 — l_[[l — Hj,n(s)]),

J#i

where we suppress the arguments A, «,, m in the EU, (-) operator because they are held
fixed when computing the equilibrium score mapping in each auction instance. Here,
CE, (b}, (s)|7:.) is the certainty equivalent of profits from the portfolio of items involved
in auction n as defined in Equation (3), and the vector of optimal unit bids bj, (s) is given
by the solution to the portfolio problem in Equation (5). In addition to optimal portfolio
profits, the bidder anticipates earning a profit from EWOs. We assume that realizations
of EWO payments are exogenous to the outcome of the auction and that expectations of
extra profits are common to all bidders. As the only information available about EWOs
in our data is the final sum paid out to the winning bidder, EWO,,, we model bidders’ cer-
tainty equivalent from EWOs in reduced form by A,- EWO,, where A, is an exogenous
scalar that is common and known to all bidders in the auction.

The term [],_,[1 — H;,(s)] corresponds to the probability that s is the lowest score
submitted under the distribution of opponent scores. Note that the entry cost «, is paid
independently of the outcome of the auction. Given our model of participation, each
bidder believes that her opponents’ types 7; , are distributed IID according to a truncated
CDF F}, such that F(7}) = 1. As such, under the unique monotonic equilibrium, the
probability of winning with score § given m — 1 opponents is equal to the probability that
the unique bidder-type 7 who submits § under the equilibrium scoring strategy s (-) is also
the lowest (e.g., most competitive) type participating in the auction: (1 — F*(s:~'(5)))" .

The function that maps bidder-types 7 to equilibrium scores s(7) in each auction is
characterized by the first-order condition establishing the optimality of EU, (s*(7)|7;,)
with respect to s. To evaluate the outcome of each auction upon entry, we solve the result-
ing differential equation in each auction n with respect to each possible number of poten-
tial bidders m; solve the portfolio problem for every possible (7, s*(7)) pair to obtain the
equilibrium bid vector b*(s:(7)); and integrate the resulting ex post DOT cost function
(b, (s:(7))-q*) with respect to the first-order statistic of the 7 distribution. To evaluate bid-
der welfare, we integrate over the bidder certainty equivalent function CE, (b:(s%(7))|7)
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TABLE V
SUMMARY STATISTICS OF CALIBRATED ESTIMATES OF EWQO COEFFICIENTS AND ENTRY COSTS.

Parameter Mean SD 25% 50% 75%
Kn $332 $834 $0.21 $23 $127
An 0.44 0.42 0 0.35 0.9

rather than the DOT cost function. See Appendix A for more details on equilibrium con-
struction, and Figure D.3(b) for a comparison of the equilibrium scores predicted accord-
ing to this model against those observed in the data. A full tabulation of counterfactual
results is presented in Appendix F.

Calibrating Expected EWO Profits and Entry Costs. Although EWOs and entry costs do
not affect the optimal spread of unit bids once a score has been chosen, they may impact
the equilibrium mapping of bidder types to scores. To account for this in our counter-
factual simulations, we first calibrate the entry cost k, and EWO coefficient A, in each
auction using moments from our entry model. We describe our calibration procedure in
detail in Appendix C.4 and present summary statistics for the calibrated parameters in
Table V. For most auctions, we are only able to rationalize a very small entry fee. This is
because the certainty equivalent of profits for the threshold-type 7 is typically very low,
given the large number of potential bidders and constraints on the magnitude of bids that
are allowable in the case that a single bidder participates.'® In addition, we find that EWO
coefficients are often quite high: the median A, suggests that bidders anticipate a certainty
equivalent of 35% of the EWO amount that was paid out.

Scaling Auctions as Insurance. While scaling auctions are widely used in many parts
of public procurement, they are not ubiquitous. Even within MassDOT, there is hetero-
geneity: in 2007, the division responsible for public transportation switched from scaling
auctions to a lump sum format in which contractors submit a single total bid for com-
pleting the project under auction. Lump sum auctions have some attractive properties.
They may require less detailed specification plans from DOT engineers and they pass the
incentive to minimize costs onto the contractor, thereby reducing the scope for moral
hazard.

However, in the context of bridge maintenance projects—where DOT officials are able
to monitor work effectively enough to eliminate moral hazard concerns—scaling auctions
provide an important mechanism for containing DOT costs. Lump sum auctions require
bidders to pre-commit to a payment at the time of bidding, leaving them liable for all
unforeseen changes. By contrast, scaling auctions compensate bidders for whatever item
quantities are actually used, and they allow bidders to hedge their bets through portfolio
optimization. Equation (10) compares the certainty equivalent that a bidder submitting
the same bid vector b would expect under a scaling auction and under a lump sum auction.

CE(b|a, y): Scaling Auction CE(bla, y): Lump Sum Auction
yo; yo;
b b t 2 e b t 2
z (btqz - actqt) T (b, — ac,) E (btqt - actqt) T (ac:) (10)
! —_— t v —_——
Expected Profits Risk Term Expected Profits Risk Term

16Based on the guidelines in the MassDOT Standard Operating Procedures, we assume that single-bidder
bids are allowable if they amount to no more than a 25% markup over the DOT-estimated score.
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Whereas lump sum auctions force bidders to internalize the full cost of uncertainty for
each item, scaling auctions allow bidders to temper their risk exposure by bidding close
to their cost on items with high variance. In this sense, scaling auctions provide insurance
against project uncertainty that is unavailable in lump sum auctions. They allow bidders
to sacrifice higher expected profits—for instance, through higher mark-ups on items ex-
pected to overrun—in exchange for lower risk. In settings with high levels of uncertainty
such as ours, this may make it possible for bidders to obtain the same certainty equivalent
with a lower score than under the lump sum format, incentivizing each firm to bid more
aggressively.

Our simulations show that the amount of insurance provisioned by MassDOT bridge
auctions is substantial. Moving to a lump sum format would increase DOT payments to
the winning bidder by over 42% in the median auction in our data set. Given the scope of
the projects in our data, this amounts to additional spending of over $300,000 per auction.

Moreover, this difference in spending compounds the effects of two competing equilib-
rium forces. On the one hand, the added risk exposure generated by lump sum auctions
acts to increase DOT spending in two ways. First, as we noted above, bidders require
higher guaranteed payments in order to be willing to participate. This is seen most clearly
through the threshold bidder-type 7%, who must bid higher in order to break even. Sub-
sequently, more competitive bidders may need to bid higher as well, in order to satisfy
incentive compatibility. Second, the threshold-type 7* itself may need to decrease in or-
der to make breaking even feasible. In this case, the ex ante probability of participation
decreases, as does the expected number of competing bidders.

On the other hand, if moving to a lump sum format causes the threshold-type 7 to
decrease, then the bidders who do participate are more competitive on average. As ef-
ficiency and risk aversion are positively correlated in our sample, this selection effect is
amplified: selected bidders are both more efficient and less risk averse. As such, con-
ditional on the number of bidders, the competitive pressure intensifies and bidders are
pushed to submit lower bids—compensating, in part, for the decrease in overall bidder
participation.

In our simulations, switching to a lump sum format reduces the median threshold type
by 20% in cost efficiency and 28% in risk aversion. If participation levels were held fixed
so that 7* remained at the baseline level, switching to a lump sum format would increase
DOT spending by 96% for the median auction. Selected participation therefore compen-
sates for over half of the added DOT spending from increased risk exposure in lump sum
auctions.

Lump Sums With Renegotiation. The lump sum simulations above assume that—as
is the case in scaling auctions—there is no ex post renegotiation. As such, bidders are
liable for the entirety of unforeseen project costs no matter how large they become. In
practice, however, bidders may be able to recoup some of their costs by negotiating for
additional payments based on ex post quantity realizations. To account for this possibility,
we consider a model in which bidders expect to be able to recoup a percentage u of
earnings lost due to unforeseen project changes—for instance, through a Nash bargaining
negotiation. In order to credibly convey their lost value from the project, the bidders are
forced to show that their claimed ex post project total could be generated by unit prices
that are consistent with their initial lump-bid. As such, each bidder expects to be paid
her score (as in the basic lump sum case), plus u of the ex post quantity differential of
each item multiplied by the item’s unit price. Bidders internalize the additional ex post
payments at the time of bidding and so they choose unit prices to maximize their certainty
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equivalent:

CE(b, a, y): Lump Auction with Renegotiation

2
e e Yo,
thqt + (ubi(q; — qf)) — ecq; — 2l (nb, — ac,). (11)
! Expected Profits Risk Term

Comparing Equation (11) to Equation (10), it is clear that renegotiation makes it possi-
ble for bidders to reduce the amount of risk that they are exposed to using their unit bids.
This is not only because bidders are partially reimbursed for every item, but also because
precommitting to unit prices allows the bidders to optimize their balance of risks as they
would in a scaling auction. In our simulations, we find that moving from a scaling auction
format to a lump sum format with 2:1 renegotiation (u = 0.33) would only increase DOT
costs by 14% or $124,195 for the median auction. If the bidder is able to bargain with
equal weight (u = 0.5), the increase to median DOT costs is only 8.5% or $92,431.

The substantial reduction in DOT costs incurred from adding a renegotiation stage to
the lump sum format suggests that providing even a small amount of insurance to bidders
may allow them to significantly cut their risk exposure. This dynamic bears out in the real-
ization of counterfactual threshold types as well. We find that the median threshold type
decreases by only 0.09% in cost efficiency and 0.13% in risk aversion when moving from a
scaling auction to a lump sum auction with 2:1 renegotiation. Under 50-50 renegotiation,
the threshold type is approximately unchanged altogether. Thus, renegotiation obviates
the majority of the participation and selection effects induced by the lump sum format,
and DOT costs are nearly the same whether or not participation adjusts.

Moral Hazard. As renegotiation eliminates much of the added cost of moving to a
lump sum format, a natural question is whether lump sum auctions with renegotiation
might be preferred to scaling auctions under some circumstances. In Appendix B, we re-
lax the assumption that bidders cannot affect the ex post realization of item quantities.
In this case, switching from a scaling format to a lump sum format would change the
quantities that are realized in equilibrium, as the winning bidder would no longer have an
incentive to overuse items with high bids (or, in the case of lump sum with renegotiation,
have a smaller incentive). While we cannot identify the extent to which item quantities
are manipulable within our framework, we consider a bounding exercise in which we as-
sume that all profitable overruns observed in our data are manipulations. Treating this as
an upper bound for the cost savings in lump sum auctions under moral hazard, we find
that the median cost of switching to a lump sum format decreases by at most 30% with-
out renegotiation and does not decrease at all with renegotiation. This suggests that our
qualitative conclusions would likely hold under a level of moral hazard that is consistent
with our data.

The Cost of Uncertainty Under Scaling Auctions. Our results above suggest not only
that scaling auctions provide substantive insurance for the bidders in our data, but also
that the amount of project uncertainty that bidders face is large. As such, a direct method
to reduce DOT costs may be to simply lower ex ante uncertainty—for instance, by improv-
ing inspection directives and engineer training. To test the potential for a policy of this sort
to be effective, we consider an extreme counterfactual in which the DOT is able to per-
fectly predict exactly what quantity of each item will be required to fulfill each project. The
ex post correct quantities are then posted publicly from the beginning, so that q° = q“. All
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bidders know that these quantities are correct and so they do not anticipate any further
uncertainty: q° = q“ and o = 0.

Disclosing ex post quantities to bidders at the start of an auction has two effects. First, it
trivializes the portfolio problem: with no project uncertainty, there is no need to hedge or
skew. Second, it grants bidders access to the exact ex post quantities—rather than sophis-
ticated estimates thereof—allowing the bidders to perfectly maximize their earnings from
an ex post perspective at the DOT’s expense. As we are primarily interested in quantifying
the cost of uncertainty itself, we first compare the no-risk counterfactual against a base-
line in which the bidders’ ex ante predictions align with the ex post quantities (q° = q*),
but the level of uncertainty ¢ is unchanged. In this case, eliminating risk reduces the
baseline variances o to zero, but does not affect bidders’ quantity expectations. We find
substantial reductions: DOT spending would decrease by about 14.5% or $145,920 in the
median auction. This suggests that—holding all else fixed—the level of uncertainty about
item quantities plays a substantial role in determining DOT costs.

However, a policy of simply reducing risk may not hold up to practical considerations.
When we compare the no-risk counterfactual to a baseline with the estimated predictions
Q" from Section 7, the DOT cost for the median auction increases by 1.9% or $18,782.
This suggests that the cost of allowing bidders to optimize their bids with respect to the
realized quantities—as opposed to noisy predictions that may induce errors that are bene-
ficial from the DOT’s ex post perspective—may balance out the savings from eliminating
risk. As such, we conclude that policies to curtail risk directly would be unlikely to im-
prove upon the status quo, given the insurance already conferred to bidders by the scaling
format.

9. CONCLUSION

This paper studies the bidding behavior of construction firms that participate in scal-
ing procurement auctions run by the Massachusetts Department of Transportation. We
develop a model of equilibrium bidding by risk-averse bidders that are collectively better
informed than the auctioneer. As noted previously in the literature, informed bidders are
incentivized to strategically skew their bids, placing high bids on items they predict will
overrun the DOT’s quantity estimates and low bids on items they predict will underrun.
Risk-averse bidders go further—by balancing their bid portfolios across items with differ-
ent levels of uncertainty, they limit their exposure to the risk of unexpected changes in
the quantities ultimately needed to complete a project.

We present evidence that bidding in our setting is consistent with these predictions:
holding all else fixed, items that overrun MassDOT’s predictions have higher bids on
average, while items that bear higher uncertainty have bids that are closer to their unit
costs. Furthermore, we argue that accounting for risk aversion has significant implications
for policy design. If the bidders were risk neutral, common policies such as switching to a
lump sum format or investing in engineer training to reduce uncertainty would not change
MassDOT spending in equilibrium. If the bidders are risk averse, however, these policies
have theoretically ambiguous, potentially large consequences.

To assess the cost due to risk in our context and evaluate the effectiveness of these dif-
ferent policies empirically, we estimate the parameters underlying our model. We then
simulate equilibrium entry and bidding decisions at the item-bidder-auction level for ev-
ery type of bidder in each of our auctions under the aforementioned counterfactual poli-
cies. We estimate that the level of uncertainty in our setting is substantial—it entails a pre-
mium of up to 14.5% on payments to the winning bidder in the median auction. However,
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an effort to reduce uncertainty may not reduce costs very much in practice, as this would
also improve bidders’ ability to maximize their ex post revenue. Moreover, switching to
a lump sum auction would be very costly—42% more for the median project—because it
would expose bidders to full liability for unexpected changes in the project specification.

Viewed in this light, scaling auctions provide MassDOT with an effective mechanism to
insure bidders against inevitable shocks due to underlying conditions that are unearthed
at the time of construction. While our framework enables evaluating farther-reaching
policies as well, such as an adaptation of the multistage optimal mechanism established
by Maskin and Riley (1984) and Matthews (1987), we leave this for future work.

APPENDIX A: SCALING EQUILIBRIUM CONSTRUCTION

Inputs. For each counterfactual, we take the following auction-specific objects as in-
puts:

q; ,- DOT quantity estimates

g7 ,: Bidder quantity predictions

o}, Bidder predictions’ variances

¢;.»- DOT cost estimates

I,,: The number of participating bidders

F,(7) and f,(7): CDF and PDF of the distribution of bidder types.

The objects g7, ¢, and I, are taken directly from data provided by the DOT. The
remaining objects are estimates derived from Section 7. The estimates of ¢/, and o},
are taken from the first stage of our estimation procedure. To obtain F,(7) and f, (), we
fit the estimates of bidder-auction types «;, and v;, from the second stage as described
below. For simplicity of exposition, we omit the = mark when referring to these estimated
parameters.

To estimate the distribution of bidder efficiency and risk-aversion types, we first project
our bidder-auction type parameters «;, and v;, onto a single dimension 7;,,. For simplic-
ity, we normalize with respect to efficiency types, so that 7;, = «;, for each (i, n) pair.
We then fit the risk-aversion types v;, to a Poisson regression model of log(«;,) with
auction fixed effects.!” Finally, we apply the fitted regression model to project a unique
risk-aversion type vy, («) for each « in each auction #. In summary, we obtain the following
map from 7 to efficiency and risk aversion: «,(7) = 7 and vy,(7) = g.(a,(7)) where g, is
the regression model fit for a bidder with efficiency «,(7) participating in auction 7. Note
that because the regression model includes auction fixed effects, the projection g, (-) will
generally differ across auctions.

Next, we fit the distribution of estimated efficiency types «;, to a truncated log-normal
distribution with a mean that depends on project characteristics according to u% = X,
and a project-type-specific variance 0. We estimate 8* and o from the distribution of
estimated «;, parameters across bidders and auctions, using Hamiltonian Monte Carlo
sampling.'® The resulting fitted parameters fully characterize the distribution of bidder
types in each auction.

17 As we discuss in Section 7, a log-linear fixed-effects regression of log(y; ,) on «; , yields an R? of 0.80. The
log-Poisson regression model improves the fit and increases R? to 0.86. In Appendix D, we present a prediction
fit regression (Figure D.4(b)) and a histogram of the residuals (Figure D.4(a)) for the log-Poisson model.

8Since efficiency types are drawn from a truncated distribution, within the same sampling procedure we
also fit that maximum type @, in each auction, as well as a maximum possible type for each bin of auctions,
Qp(n), to jointly rationalize the distribution of entrants in each bin. We compute @, again when calibrating entry
costs and extra work-order coefficients, using the rational entry condition to add precision.
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Equilibrium Construction. Bidders first choose whether or not to enter the auction;
then, if they choose to enter, they choose their bids according to a symmetric equilibrium
in which the distribution of bidder types and the number of competing bidders is common
knowledge. To characterize equilibrium outcomes, we proceed by backward induction. We
first characterize equilibrium bidding upon entry; then we characterize equilibrium entry
strategies. Since each auction is considered independently under our model, we suppress
the auction-specific marker 7 in notation below for expositional simplicity.

Equilibrium Bidding. As discussed in Section 8, the expected utility that a bidder i
receives for participating in an auction with m bidders is given by

EU(s|7;, m) = [1 — exp(—y(r)) - [CE(b; (s)|7:) + X - EWO — k)] x [ [[1 = H;(5)]
J#i

+1-ew(ym)- 0] < (1=l - #6)]) (12
j#i

where CE(b;(s)|7;) is given by

E(5;()Ir) Zq[ (b1, ~atm) ) = YT (b () —ar) @), (13)

and the vector b (s) is given by the solution to the portfolio problem:

bi(s) = argmbax|:z g’ (b — (1) - ¢;) — %2.0} (b —a(m) - c,)2j|

t=1

T
st. Y bgi=s and b,>0 forallr. (14)

t=1

Note that as unit bids cannot be negative, the portfolio problem in Equation (14) does
not have a closed- form solution, and must be solved numerically. In every instance that
optimal bids must be evaluated, we compute them through a constrained quadratic pro-
gramming solver. While standard quadratic solvers should also work well, for computa-
tional efficiency we use a custom algorithm specified to our problem as detailed in Online
Appendix F.

We assume that bidder types 7 are drawn IID from the auction-wide distribution and
construct a symmetric equilibrium in monotone strategies. Writing the equilibrium bid-
ding function: ¢ : [, 7] — R, we can rewrite the probability that i will win the auction
under bid s as follows:

[0t - H)]=[][Pr(s < ei(m))] (15)
J#i Jj#i
=Tt - F(e;'(9))] (16)

J#i

=[1-F(e'&)]", (17)
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where Equation (16) follows from the monotonicity of the equilibrium bidding function,
and Equation (17) follows from symmetry, by which all bidders use the same equilibrium
bidding function. To simplify notation, we rewrite Equation (12) as follows, dropping the
i subscript:

EU(¢(7)|7, m) = ao(7) + a (1) (V (¢(7)) x [1 = F(¢7" (e(M))]" ), (18)

where V' (¢(7)) is the expected utility of winning the auction under the strategy ¢ and
type 7, and ay(7) and a,(7) are constants that do not vary with the score s."” We pro-
ceed following an adaption of the procedure detailed in Hubbard and Paarsch (2014).
Differentiating with respect to s, we obtain the following first-order condition:

(9EU((,D(’T)|’T, m)
das

— 0, (19)

where

JEU(¢(7)|7, m)

) SV o) (1= Fle o))
Fan)( Vo) S Fle @] ™)

Writing CE(¢(7)) as shorthand for (CE(b(¢(7))|7) 4+ A - EWO), we obtain 2V (e(7))
by

V(e(r)) =1 - exp[—v(r) - CE(e(7))],

2V (¢(n)) = v(r) - - (o) x exp~(r) - CE(e(m)];

T b* T
2 e8(e) = 3[4 ¢t -3 o) - a(r)-) |

t=1

Here, the derivative of b*(¢(7)) is taken with respect to the solution of the portfolio
problem in Equation (14), and can be computed exactly through forward-mode autodif-
ferentiation of our portfolio optimization algorithm. The derivative of the second part of
Equation (18) is given through the product rule and

P y o ol x L
sl = FE N =[ e O s,
-
()]

To find the equilibrium bidding function, we solve the differential equation in Equa-
tion (19) using stiff ODE methods implemented by Rackauckas and Nie (2017). The ODE
is defined with respect to an initial boundary condition in which the threshold (highest)

YHere, ay(7) =1 — exp(y(7) - k) and a; (1) = exp(y(7) - k). As these do not depend on the bids submitted
to the auction, they cancel out in Equation (19) and can be considered constants.
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T type receives zero utility upon winning. We find the score that generates this condi-
tion when the threshold type (like all others) uses our portfolio maximization program to
choose her bids at any score.

Lump Sum Equilibria. ~As noted in Section 8, the lump sum problem is identical to
the scaling auction problem except for the formulation of the certainty equivalent. Here,
there is no portfolio problem and the certainty equivalent is given directly by the bidder’s
score:

CELump (¢(7)) = ¢(7) — [th a(7) - c.) V(T) <a<r>~c,)2}+A-Ewo.

With u-renegotiation,

E.(¢(7)) =A-EWO+ ) (uq! + (1 —p)q;) - bi(¢(7)) — ¢} (a(r) - )

t=1

YD b (o)~ a(e) )’

Equilibrium Entry. Prior to choosing whether or not to enter an auction, each bidder
observes her type 7 and decides whether it would be profitable in expectation to enter.
We construct a monotone pure strategy equilibrium such that all types below a threshold
7 enter, and all types above the threshold stay out of the auction. That is, for every type
T < 7, the expected value of entry is positive: V' (7) > 0, where

M

V=Y (]‘nf - 11) F(r)" (1= F()"" - EU(¢*(0)|7, m). (20)

m=1

Here, (1 — F(7*)) is the probability that an independent draw of a bidder type is below
7* under the distribution of types in the auction, and EU(¢*(7)|7, m) is the expected
utility that the bidder expects to earn under her equilibrium bidding strategy ¢*(7) as
defined above, in the case that m — 1 competing bidders participate.”” In the case that
there are no other competing bidders (e.g., m = 1), we assume that the bidder submits
the maximum allowable amount as her score and optimizes her unit bid spread subject
to this total.”! By construction, the marginal (threshold)-type 7* expects to earn no profit,
and so equilibrium entry probabilities are defined by the equation V' (7*) =0

To find the threshold type in each auction, we numerically solve for the root of V' (7*).
The solution then provides both the probability that each number of entrants would be
realized, and the worst (highest) type of bidder in the auction, with respect to which the
equilibrium in Equation (19) is defined. Note that the threshold type plays two roles in

Note that although we did not demarcate this explicitly, the equilibrium bidding strategy ¢*(7) itself also
depends on 7* as the distribution of competing bidder types affects the competitiveness of bidding.

2 Although there is no explicit maximum allowable bid, MassDOT guidelines state that monopolist bidders
with scores more than 5% over the DOT estimate warrant scrutiny, and allow rejecting bids with items that
are priced 25% over the DOT estimate under certain conditions. For simplicity, we take 125% of the DOT
score as a maximum upper bound on the score that a monopolist can submit. In simulations, we found that
increasing or decreasing this bound does not substantially change results.
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the equilibrium definition: it both (a) provides the boundary no-profit condition that pins
down a unique solution to the ODE in Equation (19); and (b) determines the truncation
of the CDF of types among bidders participating in the auction.

Computing Equilibrium Outcomes. To evaluate counterfactual equilibrium outcomes,
we first compute the threshold-type 7* and the equilibrium mapping ¢(-) for each auction
as described above. We then compute the expected (1) DOT cost and (2) bidder certainty
equivalent by integrating over the distribution of winning types, across all combinations
of bidder entries:

M

cosT=y_ (1 21) Fe) =) [ Yl e ) - sy

m=1

@:é(%:}) V(1 - F( M”’f ZCE(pm(T) ). dF. () d,

where ¢7 (+) is shorthand for ¢*(-|m) and F}, is the CDF of the first-order statistic of the
bidder-type distribution in the auction when m total bidders are present.

APPENDIX B: ROBUSTNESS TO MORAL HAZARD

Although lump sum auctions induce more risk for bidders, they also provide an incen-
tive for the winning bidder to minimize her costs. As MassDOT bridge procurement is
heavily monitored, our baseline model assumes that ex post bidder costs are exogenously
determined by the quantity distributions involved in each project. However, if bidders
were able to influence the ex post realization of item quantities, then the winning bidder
would be able to make additional profit by overusing items she had bid high on. Knowing
this, she might bid higher on items that will be easier to overuse.

Although we cannot identify the presence of such moral hazard from our data, our
framework can be extended to account for it in counterfactual simulations. In this sec-
tion, we consider a model of moral hazard in which bidders are able to choose which
item quantities to augment (and by how much) before they choose optimal unit bids. Our
model is aimed to capture the most extreme version of moral hazard that may be consis-
tent with our data: not only can bidders overuse items that they bid high on, but they can
also strategically choose higher bids on items that they intend to overuse at the bidding
stage.

In order to capture the constraints that limit bidders from overusing profitable items
ad infinitum in a conservative way, we assume that the extent of bidders’ quantity adjust-
ments are bounded by the observed levels of overrunning on profitable items. That is,
for each auction n, we take the set of items for which the winning bidder made a profit
from overruns. For each such item ¢, we define the maximum allowable overuse level:
Yen = (4!, — 4;,)/4;,- We assume that all profitable overruns in our data were inten-
tional, so that the variance on these items, a,,, is 0.7

To evaluate the extent to which our counterfactuals could change under moral hazard,
we solve for the equilibrium quantity, unit bid and score for each auction, bidder and

2For all other items, we set y, , = 0 and keep the variance estimates as in our baseline model.
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TABLE B.I
A COMPARISON OF COUNTERFACTUAL SAVINGS WITH AND WITHOUT MORAL HAZARD®.

CF Type Moral Hazard? Outcome Mean SD 25% 50% 75%

Lump Sum No % DOT Savings —264.39 421.65 —273.59 —104.92 —46.99
Lump Sum Yes % DOT Savings —209.35 391.22 -204.13 —73.59 -21.23
50-50 Renegotiation No % DOT Savings —10.81  16.05 —17.27 —-6.78 —1.99
50-50 Renegotiation  Yes % DOT Savings —13.13 1495 -20.61 —-10.52 —4.98
2:1 Renegotiation No % DOT Savings —24.90 3045 -39.98 —-17.73 —6.56
2:1 Renegotiation Yes % DOT Savings —26.01  28.49 —40.81 —20.15 —9.81

4Due to increased numerical errors, the sample of auctions being compared in this exercise is a bit smaller (95% for lump sum and
50-50 negotiation; 85% for 2:1 negotiation) than in our main counterfactual results.

item in each auction format. To do so, we modify Equation (5) to solve for the optimal
bids b; (s|7) and overuses y’(s|7) as follows:
a b ’yn(T) : &tzn 2
arg max Z(l + Yin) drn - (b — au(7) - C1n) — T’(b, —a,(7) - C1p)
’ t=1

T
s.t. th q;,=5,b;>0, and 0<y <y, forallts

t=1

For pure lump sum auctions, there is no incentive to overuse quantities, and so no items
are overused (although their variance is still assumed to be zero). For lump sum auctions
with renegotiation, Equation (11) is adjusted similar to the baseline case, where ¢?, can
be inflated by y;, x 100 percent, up to the maximum overuse level y, , for each item.

To solve for optimal bids and quantities under moral hazard, we recast the augmented
optimization problem in b, and y, as a mixed-integer program, using the observation that
if it is optimal to overuse an item ¢, it must be optimal to overuse it as much as possible.
Given the added complexity of these problems, we compute equilibrium savings under
the observed number of bidders in each auction only, and do not account for endogenous
entry.” However, given the magnitudes of outcomes with and without moral hazard, we
do not expect that the results would change qualitatively under the full endogenous entry
model.

In Table B.I, we present a comparison of the percent DOT savings under each of the
lump sum counterfactuals with and without moral hazard. Our results suggest that the
possibility of moral hazard would not substantially change our analysis. For lump sum
auctions with renegotiation, the median auction is almost unaffected even under our con-
servative definition of moral hazard. In fact, the cost of moving from the baseline to a
lump sum format increases by a few percentage points on median with 50-50 and 2:1
renegotiation. The cost of moving to a lump sum auction without renegotiation is more
affected: the cost of a median auction decreases by about 30-percentage points. Neverthe-
less, lump sum auctions remain much more costly than scaling auctions and our qualitative
conclusions hold.

BGiven the added complexity of mixed-integer programming, we solve the augmented bid optimization
problems with a custom solver provided by Gurobi. While this works well, Gurobi licensing restrictions limit
the number of calls that can be made at a time.
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APPENDIX C: TECHNICAL DETAILS
C.1. Proof of Equilibrium Existence

While our counterfactual equilibrium construction projects bidder efficiency and risk-
aversion types on a single dimension, our estimation procedure allows for arbitrary cor-
relations between « and vy across and within bidders. For any equilibrium in which a
bidder with type («, y) submits a score s, the optimal vector of unit bids is characterized
by Equation (5). While we cannot guarantee the uniqueness of an equilibrium without
further assumptions, the application of Reny (2011) below implies that we can interpret
the distribution of scores observed in our data as an equilibrium under some conditions.?

PROPOSITION 1: Suppose that each bidder’s type («, ) is drawn from a 2-dimensional
Euclidean cube [a, @] x [y, 7y]. Then when the support of feasible scores is sufficiently high,
there exists a monotone pure-strategy equilibrium in which each type («, y) submits a score
s*(a,y), and a vector of unit bids b(s*(a, v), &, y), characterized by the solution to the
quadratic program:

2

T
b*(s, @, ) = argmax [% > g (bils, ) —ac) - 7—;’ (bi(s,,y) — ac,)z}

t=1

T
st. Y b(s,a,y)-qi=s and b,(s,a,y)=0 forallt. (21)

t=1

PROOF: Consider the normal form representation of the game described in Section 5,
such that each bidder’s action corresponds to a score s, and for a given score s, a bidder
of type («, y) obtains the expected utility of winning generated by the vector of unit bids
b*(s, a, y) defined in Equation (21). This game immediately satisfies conditions (i) and
(ii) of Proposition 3.1 in Reny (2011), as the support of the type space is a compact subset
of Euclidean space and the action space is one-dimensional. By Corollary 4.2 of Reny
(2011), there exists an equilibrium in monotone pure strategies if for each bidder i and
for every monotone joint pure strategy o_; of other players, bidder i’s expected utility
from winning, W (-, o_;), satisfies increasing differences in each dimension of the bidder-
type space.

Note that the solution to Equation (21) can be characterized in closed form once the
set of nonzero bids is known:

b 2 e 2 b 2
b*(s, a, y) = ac, + 9./9; + 9./, <s - Z qc [ac, + Cb/%]) (22)

Y Z |: (Qf)21| r:bf (s,-)>0
2

r:bf(s,-)>0 g

r

As a bidder’s expected utility of winning with a score s does not depend on the scores
of her opponents, we can drop the dependency of W on o_; without loss. As @ > 0 and
7y > 0, it is sufficient to show increasing differences for the certainty equivalent function:

T 2
CE(s,a7) = Y. b (b5, ) — ac) = (b (s, ,7) — e

t=1

24We are grateful to Paulo Somaini for pointing out the connection to Reny (2011) underlying this proof.
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Taking derivatives, we obtain

JCE S, o,y ! aby s, &,y *
S S P S (L GO R}
t=1
Noting that
bi(say) _  alor
ds B e)?
3 [(qJ }
a;

r:bi(s,-)>0

does not depend on « or vy, and

alo- Y a4
&(bj(s7 a, ’Y) - act) __ r:bf(s,-)>0 <0

da Z [(quf}

r:bf(s,-)>0 g,

P2CE(s,a,y)
dsda

it follows that > 0 for all s and «. Considering vy, we obtain

(47 - ac] -5
F*CE(s, a, y) _rbf(s,)>0

sy 3 [(qu)z}

r:by(s,-)>0 g

(23)

Note that the numerator of Equation (23) is negative whenever the score exceeds the ex
ante (DOT-predicted) cost of completing the auction. Thus, when the support of feasible

scores is high enough that s > @) [g¢c,], we have "ZC%;V‘”) <0 for all s, @ and 7. Repa-
rameterizing bidder risk-aversion types according to y = —vy, we obtain the increasing
differences condition: ﬁc%;y”) > 0. Q.E.D.

C.2. Projecting Items and Bidder-Auction Pairs Onto Characteristic Space

Our data set consists of 440 bridge projects with a total of 218,110 unit bid observations.
Of these, there are 2883 unique bidder-project pairs and 29,834 unique item-project pairs.
Each auction has an average of 6.55 bidders and 67.8 items. Of these, there are 116 unique
bidders and 2985 unique items (as per the DOT’s internal taxonomy). In order to keep the
computational burden of our estimator within a manageable range, while still capturing
heterogeneity across bidders and items within and across projects, we project item-project
and bidder-project pairs onto characteristic space.

We first build a characteristic-space model of items as follows. The DOT codes each
item observation in two ways: a 6-digit item ID, and a text description of what the item is.
Each item ID comprises a hierarchical taxonomy of item classification. That is, the more
digits two items have in common (from left to right), the closer the two items are. For
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example, item 866100—also known as “100 Mm Reflect. White Line (Thermoplastic)”—
is much closer to item 867100—“100 Mm Reflect. Yellow Line (Thermoplastic)”—than it
is to item 853100—“Portable Breakaway Barricade Type lii”—and even farther from item
701000—“Concrete Sidewalk.” To leverage the information in both the item IDs and the
description, we break the IDs into digits, and tokenize the item description.” We then add
summary statistics for each item: the relative commonness with which the item is used in
projects, the average DOT cost estimate for that item, dummies that indicate whether or
not the item is frequently used as a single unit, and whether the item is often ultimately
not used at all.

We create an item-project level characteristic matrix by combining the item character-
istic matrix with project-level characteristics: the project category, the identities of the
project manager, designer, and engineer, the district in which the project is located, the
project duration, the number of items in the project specification that the engineer has
flagged for us as “commonly skewed,” and the share of projects administered by the man-
ager and engineer that over/under-ran.”® The resulting matrix is very high-dimensional,
and so we project the matrix onto its principal components, and use the first 15.>’ In ad-
dition, we added 3 stand-alone item features: a dummy variable indicating whether the
item is often given a single unit quantity, the historical share of observations of that item
in which it was not used at all, and an indicator for whether or not the item itself is a
“commonly skewed” item. The result is the matrix X, ,, used in the estimation in Equa-
tion (24).

To estimate bidder-types «;, and v;, for each bidder-auction pair, we combine each
bidder’s firm ID with the matrix of project characteristics described above, and a matrix of
project-bidder specific features. As a number of bidders only participate in a few auctions,
we combine all bidders who appear in fewer than 30 auctions in our data set into a single
firm ID. This results in 25 unique bidder IDs: 24 unique firms and one aggregate group.
For project-bidder characteristics, we compute the bidder’s specialization in each project
type—the share of projects of the same type as the current project that the bidder has bid
on, the bidder’s capacity—the maximum number of DOT projects that the DOT has ever
had open while bidding on another project, and the bidder’s utilization—the share of the
bidder’s capacity that is filled when she is bidding on the current project. We also include
dummies for whether or not the bidder is a fringe bidder, and whether or not the bidder’s
headquarters is located in the same district as the project at hand.”® Our X, matrix has a
total of 14 columns, and so we have a total of 78 bidder-type parameters to identify. We
use X;, and the unique bidder IDs to model «;, and v;, in Equation (30).

That is, we split each description up by words, clean them up and remove common “stop” words. Then we
create a large dummy matrix in which entry i, j is 1 if the unique item indexed at i contains the word indexed
by j in its description. We owe a big thanks to Jim Savage for suggesting this approach.

2There are 11 items that have been flagged at our request by the chief engineer: 120100: Unclassified Exca-
vation; 129600: Bridge Pavement Excavation; 220000: Drainage Structure Adjusted; 450900: Contractor Qual-
ity Control; 464000: Bitumen For Tack Coat; 472000: Hot Mix Asphalt For Miscellaneous Work; 624100: Steel
Thrie Beam Highway Guard (Double Faced); 851000: Safety Controls For Construction Operations (Traffic
Cones For Traffic Management); 853200: Temporary Concrete Barrier; 853403: Movable Impact Attenuator;
853800: Temporary Illumination For Work Zone (Temporary Illumination For Night Work).

2"We have tried replicating this using more/fewer principal components and the results are very stable.

BWe define “fringe” similar to Bajari, Houghton, and Tadelis (2014), as a firm that receives less than 1%
of the total funds spent by the DOT on projects within the same project type as the auction being considered,
within the scope of our data set.
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C.3. Econometric Details

Let b{, , denote the unit bid observed by the econometrician for item ¢ by bidder i in
auction n. Let 6 = (64, 6;) be the vector of variables that parametrize the model pre-
diction for each bid b, (s7,|6), as defined by Equation (6). The subvector 6, refers to
parameters estimated in the first stage, as detailed in Appendix C.3.1. The subvector 6,
refers to parameters estimated in the second stage, as detailed in Appendix C.3.2. By
Assumption 1, the residual of the optimal bid for each item-bidder-auction tuple with re-
spect to its noisily observed bid, v,;, = b¢,, — b;, (s7,|6), is distributed identically and
independently with a mean of zero across items, bidders, and auctions. Furthermore, v, ; ,
is orthogonal to the identity and characteristics of each item, bidder, and auction.

Our estimation procedure treats each auction n as a random sample from some un-
known distribution. As such, auctions are exchangeable. Each auction 7 has an associated
set of bidders who participate in the auction, Z(n), as well as an associated set of items
that receive bids in the auction, 7 (n). Z(n) and T (n) are characteristics of auction » and
so are drawn according to the underlying distribution over auctions themselves. For each
bidder i € Z(n) and item ¢ € T (n), our model assigns a unique true bid b}, (s},|0) at the
true parameter vector 6.

Items ¢ € 7 (n) are characterized by a P x 1 vector, X, ,, of features. Bidders i € Z(n)
are characterized by a J x 1 vector, X;,, of features. The construction of X, , and X;,
is discussed in detail in Appendix C.2. Estimation proceeds in two stages. In the first
stage, we estimate 6y, the set of parameters that govern bidders’ beliefs over ex post item
quantities, using a best-predictor model estimated with Hamiltonian Monte Carlo. In the
second stage, we estimate 6,, which characterizes bidders’ risk aversion and cost types,

using a GMM estimator.

C.3.1. First Stage

In the first stage, we use the full data set of auctions available to us in order to estimate
a best-predictor model of expected item quantities conditional on DOT estimates and
project-item characteristics, as well as the level of uncertainty that characterizes each
projection.

Each observation is an instance of an item ¢, being used in an auctioned project .
Each observation (¢, n) is associated with a vector of item-auction characteristic features
X, .., the construction of which is discussed in Appendix C.2. For simplicity, we employ
a linear model for ¢, the expected quantity of item ¢ in auction 7, as a function of the
DOT quantity estimate g;, and X, ,.*” In order to model the level of uncertainty in the
projection ¢?,, we model the distribution of the quantity model fit residuals (7, = ¢, —
q?,) with a LogNormal regression function of ¢¢, and X ,. The full model specification
is below:

qgl,n = q?,n + MNtn Where MNtn ™ N(O’ O-fzgn) (24)
such that
qin = Bo,qqzn + Bth,n and Otn = eXp(BO,oqin + Ba’Xl,n)- (25)

While we could fit this in two stages (first, fit the expected quantity and then fit the dis-
tribution of the residuals), we do this jointly using Hamiltonian Monte Carlo (HMC)

®In principle, any statistical model (not necessarily a linear one) would be sound.
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(Betancourt (2017)) with the Stan probabilistic programming language.*® We then take
the posterior means of the estimated distributions and use them as point estimates for
the second stage. Denote 6, = (B 4, B4, Bo,»» B») for the vector of first-stage parameters
and let 6, be the posterior means of 6;, produced by the first-stage HMC estimation.
Thus, 8, specifies, for each item ¢ € 7 (n) in each auction 7, the model estimate of bid-
ders’ predictions for the item’s quantity, g7, as well as the variance of that prediction,
=2

o3

t,n*

C.3.2. Second Stage

C.3.2.1. Identification. Our model of equilibrium bidding in Section 5 states that the
optimal bid vector for a bidder with efficiency-type «;, and risk-aversion type v; ,, sub-
mitting a total score of s;, is given by

b 2
Gnl T
'Yi,n

i/ T < . [ qfn/o-rzn])
- - Si,n - Z C],, ai,ncr,n + - - )
Z [(qin)z} ,,,,(th)>0 " on
2

(o

rib:;’n(xi,n)>0 nn

b} (Sin) = qinCin +

where (q},,...4% ,) and (o7,,...07 ) are exogenously fixed and commonly observed
by all bldders Collecting exogenous terms, we can rewrite b* . (s;,) as a linear projection

Of iy, 7— and Si,n‘

i,n

[ln

1
”n(sl n) - t in* ®in + Gt,i,n — 1+ Zt,i,n : si,n- (26)

i,n

Here, A, ;,, G..in, and Z, ;, capture the variation in the relative value of bidding higher on
item (¢, i, n) relative to the other items in bidder i’s portfolio in auction x. For instance,

e 2
a4 Dyl Oin .
tijn = Crn — 4,1 Crn

)3 [(‘Jf,n)z} B o Gin)=0
2

g
r:b:i,n(sl}")>0 nn

corresponds to the difference between the unit market rate of item (¢, i, n) and the ex-
pected sum of market rates (given DOT quantity estimates) of all of the items in (i, n)’s
portfolio, weighted by the relative DOT-quantity-to-uncertainty ratio of item (¢, i, n) with
respect to the rest of the portfolio. Similarly, G,;, corresponds to the difference in
the bidders’ expected quantity-to-uncertainty ratio of item (¢, i, n) to the sum of bidder
quantity-to-uncertainty ratios among the items in (i, n)’s portfolio, weighted by the rela-
tive DOT quantity-to-uncertainty ratio. All else held fixed, a higher individual market rate
¢..i,n O bidder quantity-to-uncertainty ratio ¢, /o7, corresponds to a higher unit bid b}, .
However, the trade-off by which items with hlgher costs are compensated with higher bids

3See Carpenter et al. (2017).
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depends on the weight of relative risks and returns across the portfolio, as moderated by
the cost efficiency and risk-aversion coefficients «;, and vy;,. As such, our model predicts
that the variation in unit bids observed in our data is driven by variation in how the dis-
tribution of market rates and quantity/uncertainty predictions across different items and
auctions generates optimal portfolios for different bidder types.

We make two further assumptions: (1) bidder beliefs over ¢, and o7, are pinned down
by our first-stage estimates g, and o;,; (2) optimal unit bids are observed with an ex-
ogenous mean-zero measurement error v, ; ,. Note that without the second assumption,
Equation (26) would result in an overdetermined system: within each auction-bidder pair,
there are 7, — 1 equations and 2 unknowns. With measurement error, however, Equa-
tion (26) becomes a system of regression equations:

(b;i,i,n - Zld,i,n(él) : an) = At,i,n(él) * Qg + Gt,i,n(él) : + ﬁt,i,n: (27)

in

where b¢, and s¢ are unit bids and scores, respectively, as they are observed in the

data, 6, refers to the quantity model parameters estimated in the first stage and 7, ;,, is
an orthogonal mean-zero bid error. We formally define 7, ;,, in Equation (31) in the next
section.

If the number of items in each auction could be taken to infinity, the second-stage pa-
rameters «; , and vy, ,, would be consistently estimated within each auction-bidder pair un-
der a standard orthogonality condition E[7, ;| A, ;.(61), G.in(61), Z;,(6:)] = 0 within
each bidder-auction. However, as some auctions have relatively few items and the vari-
ance of bid errors may be large across items, we pool across auctions by projecting «; ,

and v, , on a vector of bidder-auction characteristics:

ai,n = B(l],a + BX,aXi,n + Va,i,n and ’yi = Bé),y + BX,VXi,n + Vy,i,n- (28)
in

This projection induces heteroscedasticity and requires a somewhat stronger assump-
tion on the exogenous distribution of measurement errors: not only must they be uncor-
related with item characteristics within a single bidder-auction pair, but across bidders
and auctions as well. However, we argue that under our measurement error interpreta-
tion, this is a reasonable extension of the same logic: bidders have the same propensity
to round or misreport optimal unit bids in all auctions within our time frame. The co-
efficients B,, B8, may thus be consistently estimated under the augmented orthogonality
condition, E[#,;,|A;.:.(01), G:.in(01), Z. (6:), Xi.,] = 0 across bidders i and auctions n,

t,i,n

that is guaranteed by our Assumption 1.

C.3.2.2. GMM Specification. To efficiently estimate our second stage, we implement
a GMM procedure that applies the orthogonality condition above across subsamples of
our data. Each moment corresponds to the weighted expectation of bid errors across a
fixed slice of bidder-auction pairs in a sample of auction draws. In this sense, our GMM
procedure may be thought of as a weighted OLS procedure building on Equation (27).

Denote 0, = (Bg.,s--+»>Biys Bi.ys -+ +» By Bas -+ Bo.as Bx.a> - - - » Bx.,) for the vec-
tor of second-stage parameters, where [ is the number of unique firm IDs and J is the
number of auction-bidder features.’’ We estimate 6, in the second stage, using a GMM

31To simplify notation, we do not distinguish between “unique” bidders—for example, bidders who appear
in 30+ auctions—and rare bidders—whom we group into a single unique bidder ID—for the purposes of this
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framework evaluated at the first-stage estimates 6;:

é\z = argn{l)in]E,, [g(Hz, él)/Wg(Hz, él)],
2

where g(6,, 6,) is a vector of moments given a candidate 6, and W is a weighting matrix.
We make use of the following four types of moments, asymptotic in the number of auc-
tions N. The first type of moment states that the average residual of a unit bid submitted
by each (unique) bidder i is zero across auctions. There are / such moments, where I is
the number of unique bidders. The second type of moment states that the average resid-
ual on a unit bid submitted in each auction is zero, independent of the auction-specific
characteristics of the bidder submitting the bid. There are J such moments—one for each
of the auction-bidder characteristics. The third and fourth types of moments focus on
items likely to be subject to high variance in risk exposure by interacting the bidder-level
(type 1) and characteristic-level (type 2) unit bid residuals with an indicator for whether
the item being bid on was labeled as a “top skew item” by the DOT** As there are both
2J + 21 second-stage parameters and moments, we use an identity matrix for W

mzl(ezlél):E |,7-( )| Z szn(92|91) lzeI(n):|
teT (n)
m2(0|é :E Viin 0|0 1l€ n i|
] 2 1) |I(I’l)| |T( )| l;)lgz(n) t ( 2 ) Z(n) "
m?(02|é1):E |T( )| Z thn(02|9) lzeI(n) te7§:|>
teT (n)
mj(02|é1):E |I(}’l)| |T( )| Z Z Vlln(02|01) lleI(n) lte”l; X,i|

ieZ(n) teT (n)

For each auction n, we denote Z(n) as the set of bidders involved in n, 7 (n) as the set
of items used in n, 7; as the subset of all items that were labeled as “top skew items” by
the DOT chief engineer’s office, and 7;(n) as the set of “top skew items” in auction n. All
moments are formed with respect to the demeaned bid residual:

Vttn(ezlel) tzn ai,n(GZ) Cion — qt’n( . )2 |:Z CP,nQZ,n]
.y [G]

[oa
PET (n) p:n

econometrics section. For the latter group, we treat all observations of rare bidders as observations of the
same single bidder, who may enter a given auction more than once, with a different draw of auction-bidder
characteristics but the same bidder fixed effect determining her efficiency type.

32“Top skewed items” are items that were flagged by the DOT’s Engineering Office as being prone to having
especially high or low bids. These items were cited as often incurring systemic fluctuations in ex post quantities.
The list of these items largely corresponds to the most frequent strongly over/underbid items in our data.
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=~b e -~b e
_ 1 h _ qt,n |: Z qp,nqp,n}
] =2 . 12 =2
Yin(62) | @7, . (¢5..) L5 o
oy [
peT(m = Cpn
9in
- ’(6 % [0, (29)
a2,y [ Jo }
PET (n) p.n
where
ai,n(ez)=,36,a(92)+ﬁx,a(02)Xi,n and ” (02)=Bé,y(92)+ﬁx,y(92)Xi,n- (30)

The residual terms in the moments are demeaned in the sense that they use the observed
score s¢, in the formulation of the optimal bid for (z, i, n) (rather than the true equilibrium
score, s;,) and the projections of «;, and v, , (without the residuals v, ;, and v, ;). That

> Yin
is, the demeaned residual 7,;,(6,|6,) omits an unobserved score error term v, ;,, along
with projection error terms v, ; ,, and v, ; ,,

Viin="Vitn + Vsiin + Va,in + Vyins (31)
where
e Tn
- . 9in e
Vs,in = . Viin9y n»
t=1

CiDY [(‘2’;”)2]

PET (n) O-P’"

_ Qi

Va,in = Va,iin | Cton — ( . )2 |: Z cp,nqep,n] ) (32)
~2 Z |: qI;,n :| PEeT (n)
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The formulas in Equation (32) are derived by plugging the optimal score s;,, and the
a;, and vy;, parameters defined in Equation (28) into the optimal bid equation given by
Equation (6), and moving the residual terms to the left-hand side. For instance, because

each unit bid is observed with an error v, ,,, the total score sl.dn is observed with a sum of
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CITOIS!

Ty Ty

d __ * e ok . e
si,n - 2 :(bt,i,n + Vf,i,”)Qt,n - Si,n + 2 :Vf,l,”qt,n'
t=1

t=1

Note, however, that the orthogonality of v, ;,, given Assumption 1 implies that E,[v;; ],
E,[?4,,] and E,[7, ;,] asymptote to zero and are orthogonal to bidder and auction char-
acteristics as well. Consequently, 7, ; , satisfies the necessary orthogonality constraints.

C.3.2.3. Estimation Procedure. 'To summarize, we estimate our parameters in a two-
stage procedure. In the first stage, we estimate the parameters that model bidders’ expec-
tations over item quantities. In the second stage, we use an optimal GMM estimator to
estimate the parameters governing bidder types:

1. Estimate 6, = (Bo.4, By» Bo.s» B,) and initialize 6,

2. Solve

A 1 R R 1 ) .
02 = n’éin j Z(m3(02|61)2 + mf(02|01)2) + 7 Z(mjz(02|01)2 4+ mj(02|01)2) s

i=1 j=1

where I is the set of unique firm IDs and J is the number of columns in X;,. This
optimization problem is solved subject to the constraint that «; ,(6,) and v, ,(6,) be
within a reasonable range for every i and n.*

We calculate standard errors by a two-step bootstrap procedure. First, we take 100
draws from the posterior distribution of the quantity model parameters 6, in stage 1 of
our estimation procedure.* Next, we draw 100 auctions at random with replacement from
the total set of auctions in our sample, and repeat the step 2 optimization procedure for
each combination of a sample from the 6, distribution, and a sample of auctions. The
confidence intervals presented in Table D.II in Appendix D correspond to the 2.5th and
97.5th percentile of parameter estimates across the resulting 10,000 bootstrap draws.

C.3.3. Robustness to Unobserved Auction Heterogeneity

A large literature has considered the role of unobserved auction-level heterogeneity in
the identification of bidders’ values in timber and procurement auctions (e.g., Krasnokut-
skaya (2011), Athey, Levin, and Seira (2011), Roberts and Sweeting (2013)) and in first

%3This is a computationally efficient approach to impose the theoretical restriction that bidder costs are
positive (so that bidders do not gain money from using materials). To calibrate reasonable boundary values
for @ and vy, we take two standard deviations above and below the unconstrained estimates of the parameters
estimated under a simpler model with one 7y for all bidders and no constraints. We find that this constraint
does not bind for the vast majority of observations. One could alternatively impose this through an additional
moment condition. However, this would add a substantial computational burden as indicators for nonnegativity
are nondifferentiable functions. The results do not differ to an economically significant degree.

#*QOur first-stage model is estimated using a Hamiltonian Monte Carlo procedure (Betancourt (2017)),
which, like other Markov chain Monte Carlo methods, draws a sequence of samples that (after convergence) is
distributed according to the “target” distribution (e.g., the distribution of parameters governing the expected
quantities and variances for each item in each auction). The result of the procedure is a vector of “posterior
draws” for each parameter in 6;, the distribution of which is summarized in Table D.I. Our main estimates
6, (e.g., those plugged into the second stage) are the means of these (post-convergence) posterior draws. To
generate our bootstrap estimates, instead of taking the mean of the posterior draws for each parameter, we
instead take 100 random samples, and plug each draw into each iteration of the second-stage estimator.
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price auctions with risk-averse bidders (e.g., Guerre, Perrigne, and Vuong (2009), Hu,
McAdams, and Shum (2013), Grundl and Zhu (2019), Luo (2020)).

To discuss the role of unobserved heterogeneity in our setting, we consider several ways
in which unobserved auction-level shocks may enter into bidders’ considerations. First, we
consider an additive profit shock u®: an additively-separable auction-level profit or cost
that bidders anticipate at the time of bidding, but that is not bid upon and is not observable
to the econometrician. We already consider one type of such shock in the form of the extra
work order (EWO) payment ¢ in Section 5. As with EWOs, auction-level shocks such as
bonus payments or lump-sum costs for setting up work on particular project sites may
affect the distribution of bidders willing to enter into each auction. However, as these
shocks do not affect the portfolio optimization problem in Equation (5) once a score is
chosen, our identification of bidder types is unbiased by them. Thus, while our second-
stage estimation approach does not allow us to back out u“, neither our estimates of
bidder types nor their interpretation need change to account for them.*

Second, we consider unobserved heterogeneity that affects profits multiplicatively, for
instance, if bidders anticipate inflation that will devalue dollars at the time that payments
are made. Suppressing the auction identifier n, and including both an additive shock u*
and a multiplicative shock —- > 0, we can rewrite Equation (3) as

T
1—-Eg [exp(—% (u“ + &+ Zq? (b — a,—c[)>)j|
t=1

=1- exp(—:—;1 (u“ + &+ Z g’ (bi, — aic,) — ;Z;ﬂ (bii — a,-c,)z)).

t=1

As in the previous case, extra work payments & and other additive shocks u* do not affect
the structure of the portfolio optimization problem in Equation (5), and so they do not
pose a problem for identifying bidder types. However, the multiplicative shock - affects
the relative weight that bidders place on risk. In this case, - affects optimal bidding and
Equation (27) becomes

m

A ~ ~ u
(bf:,-,n — Z;{i,n(el) : s;fn) =Ain(01) @iy + Grin(61) —= +Vpin. (33)

in

As Equation (33) shows, our estimates of efficiency-types «; , remain unbiased, but the es-
timated risk-aversion parameters v; , are not separately identified from the auction shocks
w” without further restrictions. However, as our analysis relies on bidder-auction esti-
mates of v, , (rather than a cross-auction bidder-level parameter, for instance), account-
ing for u’ may be treated as a reparametrization of the estimates for v;,. That is, each
estimate of v;, may be thought of as the ratio 22, which plays the same functional role

TE)
Un

*In Section 8, we calibrate a parametric model of entry costs and EWO payment expectations based on
bidders’ entry decisions under an IPV framework parametrized by our first- and second-stage estimates. If
additional additive shocks u* were relevant to bidders’ decisions, then our estimates of ¢ would incorporate
them. However, our reduced-form model of £ may be more likely to be misspecified in this case.
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in counterfactuals.’® If " is an inflation adjustment, this ratio may be thought of as the
unit-adjusted CARA coefficient for bidder i in auction 7.

Finally, we consider unobservable shocks that may affect costs or quantity estimates, but
not bids. If bidders anticipate additional costs or quantity variance because, for instance,
they observe that a project site is in especially bad shape, then the cost of each item ¢ for
a bidder i in auction n might better be represented as («; ¢, + ¢,) or a; (¢, X ¢,) for
some auction-level amount ¢, that is unobservable to the econometrician. Similarly, the
variance of an object ¢ might better be represented as o7, + o2 or o7, x o2 for an un-

observable factor o2. In each of these cases, the portfolio optimization problem in Equa-
tion (5) would be misspecified and our estimates of «;, and 7;, might both be biased.
As such, our estimates are not robust to cost- or variance- specific unobservable hetero-
geneity of this sort. While it may be possible to account for such considerations with an
additional set of parametric assumptions, we leave this for future work.

C.4. Entry Parameter Calibration Details

In this section, we describe the procedure by which we calibrate the entry cost « and
extra work order multiplier A in each auction. At a high level, both « and A help explain
the patterns of entry observed in our data. While there is substantial heterogeneity across
projects, entry into auctions in our sample is generally quite high: the median auction has
9 potential bidders and 6 participating (e.g., entering) bidders. At the same time, many
participating bidders have relatively high (e.g., inefficient and risk averse) types 7, and the
profit margins implied by our estimates are often small.*’

Holding all else fixed, the entry cost « explains why not all potential bidders enter into
each auction. As « is incurred upon participation—irrespective of winning or losing the
auction—it does not affect bidding after entry decisions are realized. However, it raises a
trade-off for the entry decision itself: only bidders whose expected utility of participating
(the expected utility of winning multiplied by the probability of winning, integrated over
all possible numbers of entrants) is higher than the certain utility cost of entry will par-
ticipate. For each auction—with its costs and uncertainties, its distribution of potential
bidder types, its EWO amount, and its A and k—the threshold bidder type is the type for
whom this tradeoff is balanced. A higher entry cost « implies that fewer types of bidders
will find it profitable to participate, and predicts a lower entry rate. Conversely, a lower
entry cost « predicts a higher entry rate.

Unlike the entry cost, EWQO earnings (scaled by A) are only earned if a bidder wins the
auction. As such, A impacts both the probability of entry and the choice of equilibrium
score (and hence, optimal portfolio bidding) upon entry. Holding all else fixed, a higher
A reduces the break-even point for potential threshold bidders, and rationalizes entry by
higher 7 types. A higher A may also rationalize lower equilibrium mark-ups based on
item bids, as bidders account for EWO earnings when considering the expected utility of
winning.*®

%Note that our parametrization of the relationship between «;, and v;, within each auction accounts for
a multiplicative auction-level fixed effect. For instance, the positive correlation between the estimates of «; ,
and v, , in Figure 5(b) is plotted after subtracting the auction-level mean of log(y; ,) within each auction (then,
adding the cross-auction mean of log(y;,) and exponentiating); see Section 7 for a full description.

¥7See Table I for a summary of the number of realized bidders and the magnitude of extra work orders. To
get a sense of the profit margins for participating bidders, see Table IV for the distribution of ex post markups
(without accounting for EWOs or the cost of uncertainty).

¥Note that although A-EWO is assumed to be homogeneous across bidders in a given auction, the additional
profits that this term adds to winning are not fully competed away under CARA utility.
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To calibrate k and A, we compare the theoretical predictions for the entry probability
and threshold-type quantile in each auction against their empirical analogs in our data.
To generate predictions under each choice of k and A, we simulate the equilibrium entry
game detailed in Appendix A for each auction. The resulting predictions are a function of
not only x and A, but also the distribution of potential bidder types, the item quantities,
uncertainties, and market rates, and the EWO amount in each auction.

To construct groups of potential bidders, we classify all auctions with the same project
type, year and geographic region (a binary split of the 6 districts defined by MassDOT)
into a distinct bin B(n). Each bin B(n) represents a set of comparable auctions, with
similar qualifications and bidder availability. We define the number of potential bidders
in each auction as the maximum number of bidders seen in any auction within the same
bin.* In addition, we assume that « and A are homogeneous within each bin, reflecting
the idea that auctions within the same bin involve similar costs for preparing a bid, as
well as similar levels of uncertainty over the magnitude of the EWO earnings that will be
realized. Finally, we define the empirical frequency of entry g, for each auction n as the
ratio of the number of bidders who participated in auction # to the number of potential
bidders in the bin B(n).

Our calibration procedure applies a grid search across possible values of k and A. For
each pair of parameters along the grid and auction 7, we first find the threshold-type
7*(k, A) that obtains zero expected utility of entry under the empirical entry frequency

qn-
M

AGCENEDY (% - 11) G (1= )" EU, (¢ (7, V), A, m) =0, (34)

m=1

We then compute two statistics of the entry model: the predicted entry rate g/ (x, A), and
the threshold-type quantile F, (’T*(K ))). To obtain F,(7}(k, A)), we evaluate the CDF of
the distribution of potential types in auction » at 7 (k, A). In | equilibrium, only bidders
whose types are below 7} (k, A) enter the auction, and so F,(7:(k, A)) yields the proba—
bility of entry in Equation (34). Comparing F, (T*(K, A)) to the empirical frequency g,
thus provides an ex ante measure-of-fit between the model prediction at A and « and the
empirical entry rate.

To obtain g”(k, A), we compute the equilibrium of each auction n given «, A, and
7i(k, A) as described in Appendix A. We then simulate 1000 draws of 7 according to
the distribution of potential types in #n. For each 7 draw, we compute the value of partic-
ipating in the auction, V;,(7), according to Equation (20), and subsequently, compute the
share of draws in which V,,(7) is positive, so that bidders of type = would choose to enter.
In equilibrium, the share of entries equals the empirical entry frequency g, as well. Com-
paring g”(k, A) to g, thus provides an ex post measure-of-fit for the model prediction at
A and k.

Finally, since k and A vary at the bin-level, we find the best fit by selecting the k5(,) and

A 5(n that minimize the the sum of squared deviations of each comparison within each bin:

Ry Asgn) = arg n;i)‘n{ > (@0 — a2k, M) + (@0 — Fu(F (%, /\)))2}. (35)

neBn

% An alternative method would be to consider each unique bidder ever seen within a bin as a potential
bidder. As there are many small bidders who participate, this can generate quite a large number of potential
bidders, yielding very small entry probabilities. While we prefer our specification and find it more realistic, this
alternative is feasible within our framework as well.
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APPENDIX D: ESTIMATION RESULTS TABLES

TABLE D.I

FIRST-STAGE PARAMETER ESTIMATES. Ié VALUES CORRESPOND TO A CONVERGENCE DIAGNOSTIC FOR
MARKOV CHAIN MONTE CARLO. SEE HTTPS://MC-STAN.ORG/POSTERIOR/REFERENCE/RHAT.HTML FOR

DETAILS.
Parameter R # Effective Samples Mean SD 2.5% 50% 97.5%
Bql1] 1.00 8643 0.82 0.00 0.82 0.82 0.83
B4[2] 1.00 4404 —0.02 0.00 —0.03 —0.02 —0.01
B4l3] 1.00 5066 —0.01 0.00 —0.02 —0.01 —0.01
Bql4] 1.00 6002 —0.03 0.00 —0.04 —0.03 —0.02
B4l5] 1.00 6477 0.01 0.00 0.01 0.01 0.02
B4[6] 1.00 5454 —0.02 0.00 —0.03 —0.02 —0.01
Bql7] 1.00 5552 0.01 0.00 0.00 0.01 0.02
B8] 1.00 5772 0.01 0.00 0.00 0.01 0.02
B4[9] 1.00 3502 —0.03 0.00 —0.04 —0.03 —0.02
B4[10] 1.00 4293 —0.03 0.00 —0.03 —0.03 —0.02
Bq[11] 1.00 3160 —0.02 0.00 —-0.03 —0.02 —0.01
B4[12] 1.00 3383 0.01 0.00 —0.00 0.01 0.01
Bq[13] 1.00 3885 —0.00 0.00 —0.01 —0.00 0.00
B4[14] 1.00 4879 0.01 0.00 —0.00 0.01 0.01
Bq[15] 1.00 3216 0.03 0.00 0.02 0.03 0.03
B4[16] 1.00 7501 0.01 0.00 0.00 0.01 0.02
Bq[17] 1.00 4048 0.01 0.00 0.01 0.01 0.02
B4[18] 1.00 6995 —0.18 0.00 —-0.19 —0.18 —0.17
B4[19] 1.00 6760 —0.01 0.00 —0.02 —0.01 —0.00
B.[1] 1.00 7025 —0.67 0.00 —0.67 —0.67 —0.66
B.[2] 1.00 1975 —0.05 0.01 —0.06 —0.05 —0.04
B.[3] 1.00 2931 0.02 0.00 0.01 0.02 0.03
Bo[4] 1.00 4243 —0.02 0.00 —0.03 —0.02 —0.01
B.[5] 1.00 4284 0.00 0.00 —0.01 0.00 0.01
B.[6] 1.00 4056 0.02 0.00 0.01 0.02 0.03
B.[7] 1.00 3849 0.08 0.01 0.07 0.08 0.09
B.[8] 1.00 2301 0.03 0.01 0.02 0.03 0.04
B.[9] 1.00 1736 0.00 0.01 —-0.01 0.00 0.01
B.[10] 1.00 1813 —0.01 0.01 —0.02 —0.01 0.00
Bs11] 1.00 1421 0.03 0.01 0.02 0.03 0.05
B.[12] 1.00 2158 —0.03 0.01 —0.04 —0.03 —0.02
Bs[13] 1.00 2134 0.02 0.01 0.01 0.02 0.03
Bs[14] 1.00 2789 0.04 0.01 0.03 0.04 0.05
Bs[15] 1.00 2182 0.02 0.01 0.01 0.02 0.03
B,[16] 1.00 3493 0.00 0.00 —0.01 0.00 0.01
B.[17] 1.00 2109 —0.16 0.01 —-0.18 —0.16 —-0.15
B,[18] 1.00 5823 0.07 0.00 0.06 0.07 0.08
B-[19] 1.00 6423 0.02 0.00 0.02 0.02 0.03

Second-Stage Parameter Estimates. We obtain standard errors and confidence bounds
through a two-step bootstrapping procedure. We first take 100 draws from the poste-
rior distribution of the first-stage model. Then for each first-stage draw, we perform 100
bootstrap iterations of the second-stage estimation procedure. In each iteration, we re-
draw 438 auctions at random with replacement and reestimate our second-stage GMM
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model.*’ Table D.II presents the resulting 95% confidence interval for the headline esti-
mates in Tables III and IV, as well as their standard deviations both across all draws, and
within the 95% confidence interval.

TABLE D.II
SECOND-STAGE BOOTSTRAP ERRORS AND QUANTILES.

Parameter Estimate SD SD Within CI 2.5% 97.5%
Mean « 1.033 0.036 0.031 0.958 1.100
25% « 0.953 0.057 0.047 0.793 1.028
50% « 1.053 0.044 0.038 0.965 1.132
75% « 1.175 0.042 0.036 1.106 1.275
Mean vy 0.088 0.021 0.016 0.065 0.142
25% y 0.042 0.008 0.007 0.026 0.059
50% y 0.061 0.016 0.013 0.041 0.102
75% vy 0.096 0.042 0.029 0.066 0.219
Mean Markup 0.209 0.048 0.041 0.116 0.317
25% Markup —0.087 0.031 0.027 —0.146 —0.022
50% Markup 0.099 0.044 0.038 0.018 0.199
75% Markup 0.355 0.069 0.056 0.238 0.519
Model Fit Figures.

Dependent variable:
Actual Quantity

z Predicted Quantity 0.812
% 50 (0.005)
< _ Constant 0.291
) (0.015)
o Observations 29,834
0 3 6 s R? 0.476
Predicted Quantity Mean
(a) Binscatter of actual quantities vs. predictions (b) Regression report for Figure D.1a.

from the first-stage model fit.

FIGURE D.1.—First-stage model fit.

40We exclude two auctions with outlying high costs from the second stage of estimation, leaving 438 auctions.
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$15,000

510,000

Data Bid

$5,000

50
$0 $3,000 $6,000 $9,000
Predicted Bid

(a) Scatterplot of observed unit bids vs. fitted
bids from the second-stage model. Note: Unit
bids are scaled so as to standardize quantities so

exact dollar values are not representative.
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Dependent variable:

Data Bid
Predicted Bid 0.967
(0.001)
Constant 989.557
(162.154)
Observations 215,332
R? 0.881

(b) Regression report for Figure D.2a.

FIGURE D.2.—Second-stage model fit.

$6,000

@
2
z
2 sa.000
3s
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o
xz
)
2,000 -~
[
" 5o $2,000 54,000 $6,000

Predicted Bid Quantiles

(a) Quantile-quantile plot of predicted vs. data
bids. Quantiles are presented at the 0.0001 level
and truncated at the top and bottom 0.01%.

® 7
2 o
1

Predicted Winning Score ($M)
2

so " Lo
’ S0 $5 $10 $15
Data Winning Score ($M)

(b) Scatterplot of actual winning scores against
the winning scores predicted by our equilib-
rium simulation at the estimated parameters.

FIGURE D.3.—Fit plots for bids and scores with the 45-degree line, dashed in red, for reference.
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400

300

Count

100

-0.25 0.00 0.25
Residuals in Units of (y) Standard Deviations

(a) Histogram of residuals from the Poisson re-
gression model discussed in Appendix A in units
of ~ standard deviations, truncated at the top and
bottom 5% for visibility.
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Dependent variable:

fyi,n
Predicted ,, (@; ) 0.999
(0.008)
Constant 0.0001
(0.001)
Observations 2,867
R? 0.855

(b) Regression report for the prediction fit of the
Poisson regression model for ~ discussed in Ap-
pendix A.

FIGURE D.4.—Fit plots for the Poisson regression model for vy discussed in Appendix A.

APPENDIX E: ADDITIONAL FIGURES

5 Rank = 1 = 2 = 3 = 4 .
..
.
] [
40% . ]
o b, . A_.:—f.—i—?’.-—4
ESS — Lk 3 =
= | .
P P .
o " .
a
a 0% .
£
.
-40%
-100% 0% 100%
%A Quantity t

(a) Replication of Figure 3a with bidders
ranked 1-4.

o
8
<

Losing %A Bid

=
C‘n

0% 200% 400%
Winner %A Bid

(b) Replication of Figure 3b with bidders
ranked 1-4.

FIGURE E.1.—Replication of Figure 3 with bidders 1-4.
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50%

%A Bid t
1 %A Bid t1

-100% 0% 100% 0 1 2 3 4 5
%4 Quantity t Item Quantity Standard Deviation

(a) Replication of Figure 3a when the top two  (b) Replication of Figure 4a, without control-
bidders’ scores are within 10% of each other. ling for % Aq;.

FIGURE E.2.—Replication of Figures 3(a) and 4(a) with alternative specifications.

APPENDIX F: COUNTERFACTUAL RESULTS TABLES

We report the summary statistics for the counterfactual results reported in Section 8.4

TABLE FI
SUMMARY STATISTICS FOR CF THRESHOLD-TYPE CHANGES UNDER ENDOGENOUS ENTRY.

CF Type % Change in Threshold Mean SD 25% 50% 75%
Lump Sum Cost Efficiency (@) —19.48 15.00 —30.65 —20.38 —7.52
1:2 Renegotiation Cost Efficiency («) —6.08 9.14 —10.06 —0.09 0
2:1 Renegotiation Cost Efficiency (@) —0.93 3.05 0 0 0
50-50 Renegotiation Cost Efficiency () —-2.41 5.39 —0.80 0 0
No Risk Cost Efficiency (@) —0.13 3.33 0 0 0
Lump Sum Risk Aversion (y) —26.17 19.62 —41.24 —28.19 —10.74
1:2 Renegotiation Risk Aversion () —8.42 12.44 —14.28 —0.13 0
2:1 Renegotiation Risk Aversion (7y) —1.32 4.26 0 0 0
50-50 Renegotiation Risk Aversion () —3.38 7.48 —1.16 0 0
No Risk Risk Aversion (y) —0.15 4.87 0 0 0

#'Bach outcome is winsorized by 1% to exclude extreme outliers from the mean/SD calculations. These
results exclude a small number of projects for which the ODE solvers did not converge without special tuning.
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CF Type Outcome Mean SD 25% 50% 75%
With Endogenous Entry

Lump Sum % DOT Savings -97.8 190.8 —102.8 —42.2 -17.7
Lump Sum w 2:1 % DOT Savings —-17.3 28.6 —28.6 —13.8 -29
Negotiation

Lump Sum w 50/50 % DOT Savings —13.7 24.1 —23.5 -8.5 -0.2
Negotiation

No Risk (Correct q) % DOT Savings 8.0 36.3 0.7 14.5 254
No Risk (Estimated q) % DOT Savings -17.5 50.4 -17.0 -1.9 33
Lump Sum $ DOT Savings —1,127,957.1 2,780,230.0 —734,758.8 —302,299.0 —97,254.3
Lump Sum w 2:1 $ DOT Savings —321,549.6  567,099.9 —402,865.9 —124,194.6 —16,320.3
Negotiation

Lump Sum w 50/50 $ DOT Savings —224,092.1  431,945.0 -261,757.2 —92,431.1 —2481.1
Negotiation

No Risk (Correct q)  $ DOT Savings 138,945.4  599,836.5 6510.8  145,919.7  339,107.5
No Risk (Estimated q) $ DOT Savings —190,488.4  514,707.8 —162,948.3 —18,782.2 30,373.2
Lump Sum % Bidder Gain 114.9 144.9 27.9 75.8 168.7
Lump Sum w 2:1 % Bidder Gain 166.2 387.2 20.5 48.4 149.9
Negotiation

Lump Sum w 50/50 % Bidder Gain 147.7 283.0 11.9 31.6 135.5
Negotiation

No Risk (Correct q) % Bidder Gain 166.2 497.9 —32.6 -8.9 100.2
No Risk (Estimated q) % Bidder Gain —305.2 762.4 —207.7 —13.5 2.0
Lump Sum $ Bidder Gain 63,641.1 96,905.4 9719.6 37,593.9 87,450.3
Lump Sum w 2:1 $ Bidder Gain 105,305.1  218,136.7 9911.0 25,754.0 84,472.3
Negotiation

Lump Sum w 50/50 $ Bidder Gain 83,017.4 153,886.3 6332.6 17,229.4 92,870.8
Negotiation

No Risk (Correct q)  $ Bidder Gain 116,567.3  470,277.3  —24,138.8 —4951.4 87,635.4
No Risk (Estimated q) $ Bidder Gain =~ —188,641.5  462,137.2 —131,162.9 —6954.3 1088.3
Holding Entry

Probabilities Fixed

Lump Sum % DOT Savings —221.6 379.7 —226.1 -95.8 —44.1
Lump Sum w 2:1 % DOT Savings —19.0 28.6 —33.0 —14.6 —4.6
Negotiation

Lump Sum w 50/50 % DOT Savings -8.8 17.6 —16.2 —6.4 —0.8
Negotiation

No Risk (Correct q) % DOT Savings 15.1 221 7.2 15.2 23.3
No Risk (Estimated q) % DOT Savings -1.3 29.4 -2.3 0.4 4.1
Lump Sum $ DOT Savings —2,837,833.9 6,080,259.4—1,967,597.4 —709,927.9 —245,497.9
Lump Sum w 2:1 $ DOT Savings —406,632.3  724,732.9 —471,577.3 -135,711.1 —30,123.9
Negotiation

Lump Sum w 50/50 $ DOT Savings —192,411.7  361,492.8 -229,326.5 —60,254.4 —5489.5
Negotiation

No Risk (Correct q)  $ DOT Savings 193,577.9  255,820.1 81,278.6  161,773.9  287,398.3
No Risk (Estimated q) $ DOT Savings —14,278.2  205,900.0 —28,301.2 3528.1 36,913.2
Lump Sum % Bidder Gain 59.9 38.4 36.8 55.4 81.5
Lump Sum w 2:1 % Bidder Gain 40.3 35.8 20.4 34.5 54.4
Negotiation

(Continues)
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TABLE FEII

Continued.
CF Type Outcome Mean SD 25% 50% 75%
Lump Sum w 50/50 % Bidder Gain 26.3 39.1 9.7 20.7 33.0
Negotiation
No Risk (Correct q) % Bidder Gain 37.9 358.3 —24.8 —14.3 —6.7
No Risk (Estimated q) % Bidder Gain —47.0 327.7 -2.8 0.6 6.7
Lump Sum $ Bidder Gain 30,738.1 26,910.7 14,099.2 27,557.2 42,744.8
Lump Sum w 2:1 $ Bidder Gain 21,294.9 25,479.0 8492.3 17,776.4 31,684.2
Negotiation
Lump Sum w 50/50 $ Bidder Gain 12,895.1 23,537.1 4488.2 9993.6 18,917.0
Negotiation
No Risk (Correct q)  $ Bidder Gain 9333.1  134,422.0 —17,502.0 —9346.5 —3353.8
No Risk (Estimated q) $ Bidder Gain —16,629.8  134,947.4 —1355.1 332.4 3264.4
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