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Abstract

We study the impacts of New York City’s Central Business District (CBD) Tolling
Program, the first cordon-based congestion pricing scheme in the United States. Using
a generalized synthetic controls design, we find that the policy increased speeds on CBD
roads by 11%, with little-to-no effect on air quality, transactions at shops and restaurants,
or overall foot traffic in the CBD. Speeds also increased on roads outside the CBD that are
commonly traversed by drivers headed to/from the CBD. These spillovers lead to faster
trips throughout the metro area, including for many unpriced trips. We develop a simple
model to bound the driver welfare effects, and estimate gains of at least $14.3 million/week
(before any revenue recycling). These gains are largely driven by diffuse time savings for
the many unpriced trips outside the CBD, highlighting the importance of accounting for
network-wide spillovers. Finally, we show how characteristics of local travel patterns and
road networks can inform the potential impacts of introducing cordon-based congestion

pricing in other cities.
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1 Introduction

Congestion pricing is a textbook application of Pigouvian taxation (Pigou, 1920), and, in the-
ory, can achieve first-best traffic allocations by internalizing congestion externalities (Vickrey,
1963, 1969). In practice, however, congestion pricing programs are rare and always second-best:
they price only a subset of roads, trips, or times. The welfare impact of such programs depends
on how traffic flows adjust across the road network and the resulting effects on road speeds
for other drivers. These spillovers are theoretically ambiguous, as traffic can either reallocate
towards untolled roads and worsen their congestion or decrease in total volume and reduce
congestion city-wide (Verhoef, Nijkamp and Rietveld, 1996; De Palma and Lindsey, 2000).!
Despite their potential importance, empirical evidence on the spillovers of second-best con-
gestion pricing is scarce, partly because the effects are diffuse and propagate across the road
network, complicating identification.

We contribute new evidence using the introduction of congestion pricing in New York City
(NYC), the first cordon-based congestion pricing program in the United States. Under the
policy, passenger vehicles must pay $9 to enter NYC’s central business district (CBD) between
5am-9pm on weekdays and 9a-9pm on weekends.” We measure the policy’s impact using a gen-
eralized synthetic control (GSC) design (Xu, 2017) combined with data covering the metropoli-
tan areas of NYC and five control cities. Our primary data include a panel of road segment
and origin-destination level traffic statistics derived from anonymized trips taken with Google
Maps, which we complement with information on air quality from PurpleAir sensors, spending
at shops and restaurants from a sample of credit/debit cards, and foot traffic from a sample of
GPS devices. The granularity and scale of our data enable us to detect even small treatment
effects—often less than a one percent change—throughout the NYC metro area.

We begin by evaluating the effects on the now-priced CBD itself, where we find that the
introduction of congestion pricing led to an immediate and persistent improvement in traffic
conditions and little-to-no effect on non-traffic outcomes. Raw average speeds in the CBD
increased from 7.1 miles per hour (mph) pre-policy to 8.2 mph in the six months following
implementation. Relative to a synthetic control formed from other cities, we estimate that the
policy increased speeds in NYC’s CBD by 11%, suggesting that three-fourths of the observed
change in speeds is attributable to the policy. The effects on speeds are larger during the
afternoon (historically the most congested time) and persist even after peak-hour pricing ends.

Introducing congestion pricing also reduced the dispersion in speeds across roads by compressing

'In a survey of economists before the policy’s implementation, 90% of respondents agreed that congestion
pricing in NYC would “lead to a substantial reduction in traffic congestion in the targeted area,” but the
majority were uncertain as to whether traffic would increase on roads just outside the CBD (Clark Center
Forum, 2024).

2Prices are per-day, and are lower for motorcycles, higher for trucks, vans, and buses, and 75% lower during
off-peak hours. For-hire vehicles pay a per-trip fee of $0.75 for taxis and $1.50 for ridesharing companies.



the tail of extreme delays, and improved estimated fuel efficiency by 2-3%.° Beyond traffic
conditions, however, we find no detectable treatment effect on ambient concentrations of fine
particulates (PMy ), the number of credit/debit card transactions at shops and restaurants in
the CBD, or overall foot traffic.

To evaluate effects beyond the CBD, we first develop a segment-level measure of exposure
to congestion pricing based on each segment’s co-occurrence with the CBD. We define co-
occurrence as the share of drivers crossing the focal segment who also cross segments in the
CBD as part of their trip, and measure the co-occurrence of each segment using data on pre-
period traversals. Many drivers not bound for the CBD will still traverse segments exposed to
the policy, and, through this exposure to the now-priced CBD trips, may experience changes
in speed after the policy’s implementation. For example, a road segment for which half of
the cars are headed to/from the CBD has a co-occurrence of 50%. If the policy’s main effect
were to reduce CBD trips by 10% uniformly, a segment with 50% co-occurrence would see a
proportional 5% decrease in cars.

We find that the policy increased speeds throughout the NYC metro area, with larger effects
on roads with higher levels of co-occurrence with the CBD. For road segments with 80-100%
co-occurrence—which include the Lincoln Tunnel, Holland Tunnel, and other main entries—
speeds increased by an average of 13.5%. The effects then decline monotonically in the level of
co-occurrence, but even roads with 0-20% co-occurrence experienced a 1.7% increase in average
speed. Across road types, highways experienced larger increases in speeds—especially at lower
levels of co-occurrence—while the effects on local and arterial roads were more limited. The
smaller effect on roads within the CBD than on roads with 80-100% co-occurrence is partly due
to the composition of road types. The CBD comprises local and arterial roads, with auxiliary
congestion from pedestrians and stopped vehicles (even at 3am, the average CBD speed is less
than 15 mph), while roads leading into the CBD tend to be larger highways whose speeds
respond more to changes in volume.

The changes in road segment speeds add up to meaningful differences in travel times across
the city. For trips to the CBD, the implementation of congestion pricing increased average trip
speeds by about 9%. While drivers on trips to the CBD pay for these time savings, passenger
vehicles on other trips within, from, or outside the CBD benefit from increased speeds without
paying the new fee. Speeds on trips within and from the CBD increased by 6-7%, and even
trips entirely outside the CBD experienced modest gains of 0.5-2% depending on the distance of
their origin and destination to the CBD. Distributionally, the policy increased average speeds

on road segments within Census tracts across the distribution of median household income,

3We infer fuel efficiency on road segments using an engineering model that transforms speed profiles and
segment characteristics into an estimate of liters consumed per 100 kilometers traveled, similar to the approach
in Brooker et al. (2015).



with, if anything, larger effects in lower-income tracts. Similarly, speeds on trips to or from the
CBD increased by 7.5-9% for tracts across the income distribution. For New Jersey residents,
the policy increased speeds on road segments within Hudson and Bergen counties by 4.7%, and
increased speeds on trips to (from) the CBD by 10.5% (9.7%). For residents of the Bronx and
Long Island, the policy increased speeds on road segments within each area by about 3% and
increased speeds on trips to/from the CBD by 5-10%.

To evaluate the effects of congestion pricing on drivers’ welfare, we build a simple model
in which drivers value both travel times and prices. We show that the model can provide a
lower bound on driver welfare gains given data on pre-period volumes and observed price and
travel time changes. The 1.61 million passenger vehicles traveling to the CBD during peak
hours in a typical week save an average of 3.1 minutes and pay an average of $7.9." For these
trips, the policy is only welfare-improving if the drivers’ Value of Travel Time (VOTT) is over
$153/hour. However, because of the spillovers in road speeds, many unpriced trips are also
now faster. While we estimate that the average unpriced passenger vehicle trip saves just 11
seconds, there are far more unpriced trips than priced trips. Including unpriced trips, the
‘break-even’ VOTT of drivers for the policy is at most $21/hour. We repeat a similar exercise
for taxi/FHV trips, which save similar amounts of time but at a lower per-trip fee. If all drivers
and taxi/FHV passengers have a VOTT of $40/hour, then we estimate total weekly welfare
gains—before any revenue recycling or environmental benefits—of at least $14.3 million, which
come almost entirely from unpriced trips. The implied peak hour revenue is about $14 million
per week,” and, based on the improved fuel economy on trips, we estimate a savings of about
653 tonnes of COy each week, which is worth $120,900 if the social cost of carbon is $185 per
tonne (Rennert et al., 2022).

Finally, we investigate the mechanisms behind the observed effects in NYC and assess
whether similar results are plausible in other congested cities. The impact of cordon-based
congestion pricing depends on three underlying factors: 1) how pricing changes traffic volumes;
2) the exposure of other drivers to the volume changes; and 3) the shape of the congestion
functions that describe the relationship between traffic density and speed on different roads.
While our data are ill-suited to speak to how demand would respond to price changes, we
evaluate how the latter two ingredients contributed to the policy’s effectiveness in NYC and
compare across our control cities to assess the potential for congestion pricing beyond NYC.
Intuitively, if most CBD-bound trips begin just outside of the cordon area, or if the roads they

traverse are already at free-flow speeds, then few other drivers will be affected by any change

4The average price paid is lower than the advertised $9 toll due to crossing credits for entering the CBD
through an already-tolled entrance, such as the Lincoln Tunnel.

5This is an approximation of the true operating revenue and does not account for other vehicle classes,
low-income discounts, uncollected fares, and same-day repeat entries. The MTA reported CBD toll revenues of
$159 million for January to March 2025, i.e. $13.3 million per week (MTA, 2025a).



in the number of CBD trips. If, instead, CBD-bound trips originate from the outskirts of the
metro area and travel on congested roads, then changes in CBD trip volumes will have larger
spillovers on speeds for other drivers.

We use pre-policy data to measure exposure to CBD trips and to estimate congestion func-
tions for roads throughout each metro area. We calculate exposure as the average duration-
weighted co-occurrence of segments traversed on trips to, from, and within the CBD. For a
focal driver sampled at a random moment during their trip, this measure of exposure captures
the expected share of drivers on the road who are headed to/from the CBD. To estimate the
congestion functions of roads, we group road segments by their co-occurrence bin (i.e. 0-20%,
20-40%, ...) and road type (i.e., local, arterial, and highway) and estimate separate congestion
functions for each set of roads in each city, using a functional form from the Bureau of Public
Roads (BPR) and data on contemporaneous speeds and densities. We do not directly observe
density, so, following Choudhury et al. (2024), we impute density based on the observed partial
flows. Consistent with the traffic engineering literature, the estimated congestion functions are
typically convex, especially on highways (Seo et al., 2017). As a result, the effects on speeds of
a constant change in density depend on where along the congestion function pre-policy traffic
operated. If the road typically operates near a steep part of its congestion function, the ex-
ternality of the marginal car is large and removing even a few cars can substantially increase
speed. For each city and trip type, we estimate the average local elasticity of the congestion
function of road types traversed, evaluated at the average pre-period density.

While NYC is middle-of-the-road in terms of drivers’ exposure to CBD trips, roads in NYC
operated at far more elastic parts of their congestion functions before the policy’s implementa-
tion. At these ‘steep’ parts of a congestion function, small changes in volumes can have outsized
effects on speeds. The gaps across cities are often large: trips to, from, and outside the CBD
in NYC traversed roads with average local elasticities about 70% higher than similar trips in
Philadelphia. The closest city is Boston, where the average elasticities for roads along trips
of each type were about 10% smaller than in NYC. In cities with higher local elasticities, the
marginal effects of adding or removing drivers on travel times will be larger. Looking across
the control cities, introducing cordon-based congestion pricing may be the least effective in
Philadelphia (where average exposure and congestion function elasticities are generally smaller
than in NYC), and most effective in Boston or Chicago (where the average exposure is higher
than in NYC and the congestion function elasticities are only modestly smaller).

Our work most directly contributes to studies of cordon-based congestion pricing programs,
including early evaluations of the New York City policy by journalists (Gordon et al., 2025; Ley,
Hu and Collins, 2025; Hu, Ley and Schweber, 2025) and a larger body of work on older policies in

London, Stockholm, Milan, and elsewhere.® Past research found that the 2003 implementation

60ther studies conduct ex-ante simulations of potential congestion pricing policies in cities without any



of a congestion charge in downtown London led to reduced traffic, lower pollution, and fewer
accidents (Leape, 2006; Green, Heywood and Paniagua, 2020; Tang and van Ommeren, 2022).
Similar effects have been documented for congestion pricing in Stockholm (Eliasson et al., 2009;
Simeonova et al., 2021; Nilsson, Tarduno and Tebbe, 2024) and Milan (Gibson and Carnovale,
2015). However, these existing programs were introduced before the prevalence of Google Maps
or other large data sources, so researchers often relied on survey data or a handful of traffic
sensors in the focal city alone. In contrast, NYC congestion pricing launched during a far
more data-rich era, allowing us to estimate treatment effects on a range of precisely measured
outcomes, and to identify some of the mechanisms underlying the effects.

Existing evidence on the spillovers of “second-best” congestion pricing policies is mixed.
Early theoretical work focused on the welfare effects of first-best pricing in a world with just
a single road, setting aside any spillovers (Vickrey, 1963, 1969). Later, studies of second-
best congestion pricing—where only a subset of roads are priced—incorporated the effects of
spillovers, but were primarily focused on the potential negative impact on speeds of roads that
were substitutes for a tolled road (Verhoef, Nijkamp and Rietveld, 1996; De Palma and Lindsey,
2000).” Empirical evidence remains limited. Herzog (2024) documents a decrease in volumes
recorded by human enumerators for highways leading towards downtown London, while Gibson
and Carnovale (2015) finds a small increase in volumes measured by traffic sensors on roads
that skirt the boundary of Milan’s congestion zone. Our data allow us to observe speeds on
the near-universe of roads in each metro area, with sufficient precision to detect small effects.
We find positive spillovers on roads even far from the CBD, and show how the magnitude
depends on each segment’s “co-occurrence” with CBD trips and the steepness of its congestion
function at the relevant level of traffic. Accounting for these small, diffuse spillovers is critical
for measuring welfare, and excluding them can flip the sign of aggregate driver welfare.

Finally, our work relates to the classic literature on the use of corrective taxation to deter
externality-producing behaviors (Pigou, 1920; Diamond, 1973; Weitzman, 1974). The intro-
duction of congestion pricing in NYC generated positive welfare gains even before using the
tax revenue. We show that NYC roads were operating at steep points of their corresponding
congestion functions, suggesting that uncorrected traffic externalities are especially large, and

larger in NYC than in many other cities.

existing policy. See, for example, Almagro et al. (2024); Barwick et al. (2024); Durrmeyer and Martinez (2024);
Ater et al. (2025). Hierons (2024) evaluates the potential effects in NYC specifically. In lieu of congestion
pricing, some cities impose driving restrictions and car-free zones, which can reduce downtown congestion and
pollution but are inefficiently targeted and do not raise any revenue (Davis, 2008; Gallego, Montero and Salas,
2013; Sleiman, 2024).

"The classic example is a tolled highway running parallel to a free highway. In the US, many roads now have
‘express lanes’ that are dynamically priced in response to current traffic conditions. These lanes offer drivers
the option to pay for faster speeds when needed, but can increase congestion in the remaining untolled lanes
(Hall, 2018; Bento, Roth and Waxman, 2024; Cook and Li, 2024).



2 Congestion Pricing in NYC

New York City’s congestion pricing policy, officially known as the Central Business District
Tolling Program, was implemented on January 5th, 2025. The initiative imposes a fee on
vehicles entering Manhattan south of 60th Street, excluding the FDR Drive and West Side
Highway. The tolls are collected electronically and vary based on the time of day, vehicle
type, and whether the vehicle is equipped with an E-ZPass transponder. The Metropolitan
Transportation Authority (MTA) plans to use the toll revenue to fund repairs and enhancements
to the city’s subway, bus, and commuter rail systems.

Toll rates are set at $9 per day for passenger cars and small commercial vehicles if paid by
E-ZPass. Motorcycles pay $4.50 per day, while trucks and buses pay between $14.40 and $21.60
per day, depending on their size. These rates are reduced by 75% overnight, and are up to 50%
higher if drivers do not have E-ZPass and instead pay by mail. Taxis and ridesharing vehicles
pay a per trip rate of $0.75 for taxis and $1.50 for ridesharing vehicles for trips that start, end,
or pass through the CBD.® There are a few exempted vehicles (e.g., emergency vehicles), and
vehicles entering via certain bridges or tunnels that are already tolled receive a partial credit.
Low-income residents can also apply to receive 50% off after their first ten trips in a month.
The passenger car rate is set to increase to $12 in 2028 and $15 in 2031.

The policy faced criticism and legal challenges during its development. Critics argue that
this approach imposes an additional financial burden on residents, may have adverse economic
impacts on business, and will shift traffic and pollution to other parts of the city (Ley, 2022). At
least ten lawsuits were filed against the MTA and state officials by business coalitions, elected
officials from New Jersey, and others (Hu and Ley, 2024).

3 Data & Empirical Strategy

We build data covering traffic conditions, air quality, consumer spending, and foot traffic for
New York City and five other cities, which we use to form synthetic controls. The five control
cities are Philadelphia, Boston, Chicago, Atlanta, and Baltimore. For each city, we define its
boundaries according to the corresponding Core Based Statistical Area (CBSA) and define its
CBD using the most prominent version of a CBD or ‘downtown’ drawn by a city government-

affiliated organization.” Appendix A contains additional details on each data source.

80strovsky and Yang (2024) evaluate the pricing by vehicle type and argue that the small per-trip charge
on taxis and ridesharing companies is too low, as a single trip by a taxi likely contributes as much congestion
as a trip by a private vehicle.

9In NYC, the congestion pricing cordon area aligns with the NYC CBD boundaries defined by the City of
New York before it released any plans for a lower-Manhattan congestion pricing policy (NYC Department of
City Planning, 2011). Appendix A.1 documents the official sources we use to define the CBD shapes in control
cities.



3.1 Google Maps Traffic Trends

Our primary data on traffic conditions are anonymized and aggregated statistics from trips
taken with Google Maps during the period of the study. The Google Maps Traffic Trends
data include two primary sets of statistics: 1) hourly road segment-level outcomes, which we
then further aggregate in time and space across sets of road segments; and 2) hourly origin-
destination (OD) level outcomes, which are aggregated across trips based on OD Census tract
characteristics. The sample covers traffic conditions from September 2024 through June 2025.
Except where otherwise noted, all analyses focus on data during priced hours (5am — 9pm on

weekdays and 9am — 9pm on weekends).

Segment-level outcomes. For all segment-level analyses, we group segments by either ge-
ographic location, such as Census tracts, or by shared characteristics, such as co-occurrence
with the CBD. Road segments vary in length, with an average of approximately 50 meters. For
each segment-level outcome, we consider aggregates composed of the harmonic mean weighted
by traversal distance. To maintain a stable composition of road segments within a group, we
further weight each segment by its average share of traversals within hour ¢ between September
and December 2024. That is, for a given outcome y measured across segment group j in hour
t, we consider the distance-weighted average outcome:

Z 0-57t X ds,t
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where S; is the set of traversals through segments s in segment group j, o, is the pre-policy
segment weight, and d,; is the traversal distance (equivalent to the length of each segment).
We consider three types of outcomes: traversal speed, normalized traversal speed relative to
the segment’s speed limit, and the estimated fuel consumption rate. For fuel consumption, we
estimate liters of gasoline per 100 kilometers consumed by a ‘typical sedan’ on a road segment
based on the segment characteristics and speed profile, similar to the approach in Brooker et al.

(2015). Appendix A.2 provides additional details on how we model fuel consumption.

Origin-destination (OD) level outcomes. Our second set of data covers full trips through-
out the metro area, rather than individual road segments. Because of the more granular def-
inition of these data, we aggregate trips to Census PUMASs rather than Census Tracts and to
two-hour bins. We define origins and destinations based on groups of Census PUMAs, and
whether the trip starts and/or ends within the CBD. For each OD pair, we measure the real-
ized travel times and trip speeds (e.g. travel time divided by trip length), aggregated across all



trips within a given OD-hour bin. To maintain a stable composition of trips between different
PUMASs within a group, we weight each trip by the average trip volume in the same OD-hour
bin between September and December 2024.

3.2 Other Outcomes

Air quality. We use air quality data from PurpleAir to estimate the effects of the policy
on pollutant levels in New York City. PurpleAir is a company that sells PMs 5 sensors as a
consumer product. We focus on the effects on PMs 5 over other pollutants as this pollutant
accounts for most of the adverse health effects of air pollution in the U.S. (Tschofen, Azevedo
and Muller, 2019). For each city, we query the data of all outdoor PurpleAir sensors in the
corresponding CBSA. The data include 22 unique outdoor PurpleAir sensors in the NYC CBD
and 1,067 sensors throughout NYC and our five control cities. We calibrate the PurpleAir
PM, 5 data as recommended by the Environmental Protection Agency (EPA) (Barkjohn et al.,
2022); we describe this process in Appendix Section A.3.

Consumer spending. To measure consumer spending, we use proprietary credit and debit
card transaction data compiled by MBHS3 and provided through Yale University. The un-
derlying data contain approximately 35 billion annual transactions by 180 million individuals.
We receive data aggregated at the level of zipcode, day, and 3-digit North American Industry
Classification System (NAICS) code for transactions between January 2024 and April 2025.
We focus on transactions at restaurants or retail establishments, which we identify using their
3-digit NAICS code. For retail establishments, we restrict attention to five NAICS categories
that had over a million observed transactions in the NYC CBD during 2024.!° In NYC, the
data include 165 million restaurant transactions ($4.6 billion total spend) and 286 million retail
transactions ($13.2 billion total spend) during the sample period (Appendix A.4). The bound-
aries of NYC zipcodes almost exactly align with the CBD boundaries, so we define a zipcode
as treated by the policy if its centroid lies within NYC CBD.

Foot traffic. We use Advan Research’s Neighborhood Patterns to measure the amount of
foot traffic in the CBD over time.'! The underlying data are passively collected from mobile
applications on GPS-enabled devices (e.g., smartphones) that record a device’s coordinates and
timestamps whenever connected to the GPS. These data, which cover approximately 7% of the
overall population (Li et al., 2024), are then stripped of personal identifiers and aggregated for

research purposes. The aggregate data we receive include the number of visits to each Census

10The categories are Food & Beverage Stores, Health & Personal Care Stores, Clothing & Clothing Accessories
Stores, General Merchandise Stores, and Miscellaneous Store Retailers.
1 The data was previously distributed under the name SafeGraph Patterns.



tract in each hour. We further aggregate to the tract-day level by summing the number of visits
to a tract during peak hours. We use data from January 2024 through June 2025, and define
a tract as treated by the policy if its centroid lies within the NYC CBD.

3.3 Empirical Strategy: Generalized Synthetic Controls (GSC)

A direct comparison of average outcomes before and after the policy combines the policy’s
effects with any other time-varying factors influencing traffic conditions. As such, we adopt the
generalized synthetic control (GSC) methodology introduced by Xu (2017), which compares
changes in traffic conditions in NYC to contemporaneous changes in comparison cities.

Let Y;:(0) denote the potential outcome for unit 7 at time ¢ if untreated and Y (1) denote
the potential outcome if i is treated. Following the GSC framework, we assume that the
untreated potential outcome Y;;(0) can be decomposed into a low-rank factor structure, plus
some idiosyncratic noise:

Yie(0) = ay + 71 + N i + ea (2)

where «; is a unit fixed effect, 7, is a time fixed effect, A; is a vector of factor loadings specific
to unit ¢, f; is a vector of common factors, and g is an idiosyncratic error term.

For each outcome, we estimate these factors and loadings using pre-treatment data. We
then predict counterfactual outcomes Yit(O) =& + Y+ XZTE} for each post-treatment period
t > Ty. The Average Treatment on the Treated (ATT) in period ¢ is defined as:

% S Vi — ¥a(0) (3)
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where Z is the set of treated units. We often report the aggregate ATT, given by ATT =
T+T0 Zt>TO ﬁ, where Tj is the last day before pricing begins. We implement this procedure
using the gsynth package for R, provided by Xu (2017). We use cross-validation to select the

factor dimension and report parametric standard errors for inference.

4 Direct Effects in the CBD

According to the MTA (MTA, 2025b), vehicle entries into the CBD decreased by approximately
10% following the introduction of the congestion pricing policy and have held steady (after
accounting for seasonal fluctuations) through June, 2025. In this section, we examine the
effects of congestion pricing on road conditions, air quality, consumer spending, and foot traffic
in the NYC CBD. We find that the policy increased average speeds on CBD roads by 11% and

improved estimated fuel efficiency by 3%. The largest effects were on the slowest roads and at



the most congested times of day. Beyond traffic conditions, however, we find no evidence of

impact on ambient air quality, visits to restaurants and retail establishments, or foot traffic.

4.1 Road Speeds within the CBD

The average speed on road segments in the NYC CBD increased from 7.1 mph in the four months
preceding the policy’s implementation to 8.2 mph in the six months after implementation
(Figure 1). However, the speed increase before and after the policy’s implementation is not
unique to NYC. In fact, average speeds in the CBDs of Boston, Philadelphia, Atlanta, and
Chicago were also higher after January 5th than in the preceding months (Table C.1), although
the increase in NYC is the largest relative to pre-period speeds. Figure 1 shows head-to-head
comparisons of CBD road speeds in NYC, Chicago, and Philadelphia. In NYC, speeds increased
sharply around the start of January 2025, and have remained above their pre-period average.
Speeds in Chicago and Philadelphia also increased at the start of year, but have since fallen to

their pre-period average in Philadelphia and below their pre-period average in Chicago.

Figure 1: Average speeds on CBD road segments
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Notes: This figure documents the traversals-weighted average daily speed on road segments in the CBD of NYC, Philadelphia,

and Chicago from September 2024 through June 2025. The horizontal blue line represents the average speed in NYC
between September 1 and December 15, 2024.

To what extent is the observed increase in speeds in NYC’s CBD attributable to the effects
of the congestion pricing policy? To evaluate this, we compare speeds in the NYC CBD to
speeds in the CBDs of other cities by estimating Equation (3) using a panel of average speeds.
Figure 2a plots the day-level ATT on log average speeds for CBD road segments during priced
hours.'? Prior to the policy’s launch, speeds in NYC were similar to the counterfactual speeds
constructed from the set of comparison cities, suggesting that the GSC approach accurately

captures trends across cities. After the onset of congestion pricing, average speeds in the CBD

12Figure C.1 includes similar plots for other measures of CBD traffic conditions, including median speeds.
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increased sharply by 10-15% relative to the synthetic control. The increase persisted through
the first six months, with some reversion in May before rebounding in June. Averaging over
this period, the implementation of congestion pricing increased speeds by 11%. This suggests
that, under the assumptions of the GSC estimator, the policy’s causal impact accounts for
about three-fourths of the change in raw average speeds on CBD segments.

These average effects aggregate over both extreme stop-and-go traffic and near-free-flow
traffic. Most roads in the CBD are arterial roads (e.g., 5th Avenue) or substantially narrower
local roads, both of which are generally slower (and with lower speed limits) than the handful
of high-volume highway segments included in the CBD area. The average speed on arterial
roads prior to the policy was 7.1 mph, while on local roads it was only 5.5 mph (Table C.1).
The 10th percentile of pre-policy speeds was under 3 mph for both local and arterial roads
and the 90th percentile was about 20 mph for local roads and 25 mph for arterials. The
introduction of congestion pricing disproportionately impacted the slowest traffic conditions.
The 10th percentile of road speeds experienced across the CBD increased by 13.8% on average,
and the 90th percentile of road speeds increased by 2.8% on average. Therefore, one effect of
the policy was to compress the tail of extreme delays, an outcome with potentially important
welfare implications for reliability (Small, Winston and Yan, 2005). Measured directly, the
dispersion of road speeds in the CBD, as captured by the ratio of 90th to 10th percentile
speeds, decreased by 9%, and, by the ratio of 80th to 20th percentile speeds, decreased by 9%

As a complementary exercise, we consider the impact of the policy at the level of trips that
start and end inside the CBD (first line of Figure 2a). This measure differs from the segment-
level results above by capturing the end-to-end experience of travelers, aggregating over multiple
links, intersections, and delays. For trips entirely within the CBD, we estimate that congestion
pricing increased the average speed by about 5.3% since implementation, somewhat smaller
than the segment-level estimates. However, this focuses only on trips that take place entirely
within the CBD, while the segment-level results account for road conditions experienced by all
drivers passing through the CBD regardless of origin or destination. In Section 5.3, we extend
this exercise and discuss how different types of trips throughout the NYC metropolitan area
were affected.

The average effects also aggregate over substantial heterogeneity across times of day. Before
the policy’s implementation, average speeds in the CBD ranged from 14 mph in the early
morning to half that in the late afternoon (Figure 2¢). In Figure 2d we present ATTs on log
CBD road speeds for each two-hour time window between 3am and 11pm. This breakdown
of the policy’s effects shows that the increases to average road speeds were modest in the
early morning (3-—5%), but rose to 15% in the weekday afternoon peak and above 20% on
weekend afternoons. That is, the relative impact of congestion pricing on speeds was largest

during the times of day when congestion was most severe prior to the policy. Moreover, the
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increases in road speeds persist after the end of peak-hour pricing at 9pm, suggesting that the
decreased entry volumes throughout peak hours had spillover effects to road conditions later in
the evening.

Taken together, these results reinforce the canonical prediction that congestion pricing raises
speeds on priced roads (Vickrey, 1969), and provide new evidence on the magnitude, persistence,

and distribution of effects across times and road types.

Figure 2: Effects on Speeds in the CBD
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average segment /trip speeds by two-hour bin in each CBD. The horizontal blue line is the aggregate ATT for all
post-treatment periods. Panel b) documents the ATTs on other traffic outcomes in the CBD, including median speeds and
speeds on different types of roads. Panel ¢) documents the average pre-period speeds by hour bin and weekday vs weekend.
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and hour bins as potential controls. Shading and vertical bars denote 95% confidence intervals. Standard errors are
clustered at the city-level.

Fuel consumption and air quality. Changes in traffic patterns also affect the quantity

and location of vehicle emissions. CO, emissions impose externalities worldwide, while local
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air pollutants such as NOx, CO, and particulates impose externalities on nearby residents
(Buckeridge et al., 2002; Currie and Walker, 2011; Knittel, Miller and Sanders, 2016). While
we cannot directly observe vehicle emissions, we use predicted fuel consumption rates as a proxy
for emissions. For a given vehicle type, the primary determinants of fuel consumption are vehicle
speed profiles and the segment type. Cars traveling at 5 mph—close to the average CBD speed
in late afternoon—will consume about four times as much fuel per mile as those traveling at
60 mph (Figure A.1). Compared with the control cities, estimated fuel consumption rates on
NYC CBD segments decreased by 3.4% after the launch of congestion pricing (Figure 2b).

Despite the more efficient speed profiles and reduced vehicle traffic in the CBD, we find no
evidence of effects on air quality. The estimated treatment effect on PMs 5 inside the NYC
CBD is statistically indistinguishable from zero (Figure 2b), and we can reject changes of
similar magnitude to those found following the implementation in London (Green, Heywood
and Paniagua, 2020) and Stockholm (Simeonova et al., 2021). The bottom end of the 95%
confidence interval is -0.25ug/m?3, which would be a 3.3% decrease in the pre-period daily
average. One plausible explanation is that the London and Stockholm programs launched
when emissions standards were less stringent, so the marginal vehicles deterred by congestion
pricing in NYC may differ from those deterred in London and Stockholm. For example, the
Euro 3 emissions standards (2000-2005) allow for over seven times more NOx per kilometer
than the Tier 3 US emissions standards (2017-) allow for NOx and NMOG combined (0.15
g/km vs. 0.018 g/km).

4.2 Commerce and Foot Traffic

The reported decrease in vehicle entries to the CBD raises the question of whether individual
wisits to the area decreased as well. Lower vehicle volumes may indicate fewer visits if drivers
substituted toward driving to different locations or staying home, but not if drivers substituted
toward carpooling or traveling by transit, walking, or other modes. To examine this, we apply
our synthetic controls approach to estimate the treatment effects of the congestion pricing policy
on visits to restaurants and retail establishments, as well as on overall foot traffic.

First, using the aggregated data from credit/debit card spending, we compare the number
of transactions and the total amount spent at restaurant and retail establishments in the NYC
CBD to those in our control cities. We estimate Equation (3) using zipcode-day level data and
weight observations by the number of transactions in a given zipcode-category during 2024. The
data capture all transactions within a day, without distinguishing peak from off-peak hours.

We find no evidence that congestion pricing reduced the number of transactions at either
restaurants or retail establishments in the NYC CBD (Figure 3). Point estimates are close

to zero, and the confidence intervals rule out decreases of over 1.3% at retail establishments

13



and 2.5% at restaurants. However, we find that the total dollars spent decreased by 5% at
restaurants and 2% at retail establishments, although the latter is not statistically different
from zero. With transaction counts unchanged, this suggests that either customers are spending
less per visit or establishments are lowering prices relative to control cities.

We also examine impacts on foot traffic in the CBD, again estimating Equation (3) with
tract-day counts of CBD visitors during peak hours and weights corresponding to pre-policy
total foot traffic. Here, too, we find no clear effect: the number of CBD visitors in the GPS
data remains stable relative to our control cities, implying that any reduction in car trips
has been offset by substitution toward other modes. This distinction is important. Speeds
in the NYC CBD rise after the policy, consistent with fewer vehicles entering the cordon, yet
restaurant /retail transactions and foot traffic remain steady. Together, the results suggest that
travelers primarily adjusted along the intensive margin of mode choice rather than the extensive
margin of deciding whether to visit the CBD at all. However, while the point estimate for foot
traffic is zero to four decimal places, the confidence interval remains wide enough to admit

meaningful changes (Figure 3).

Figure 3: Effects on Other Outcomes in the CBD
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Notes: This figure documents ATTs on a range of outcomes for the CBD. Average fuel consumption is estimated by Google’s
internal model, and we use the same specification as in Figure 2a to compute the ATT. For pollution, we use day-sensor
level measures of ambient air quality (PM2.5) from PurpleAir from sensors in the NYC CBD and in our control cities. For
spending, we use day-merchant zipcode level data from MBHS3 on aggregate spending from a sample of credit and debit
cards. We categorize retail and restaurant businesses based on their 3-digit NAICS code. For foot traffic, we use hour-tract
level data from Advan on the number of visits by GPS-enabled devices, which we subset to peak hours and then aggregate
to the day level. Horizontal lines denote 95% confidence intervals. Standard errors are clustered by city.

5 Spillovers beyond the CBD

Cities are interconnected, and policies that affect one area invariably affect the entire city. A
cordon toll directly prices only trips crossing into the cordon zone, but its impact on welfare

depends as much on how traffic reallocates across the untolled parts of the network as on the
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priced zone itself (Verhoef, Nijkamp and Rietveld, 1996). If traffic diverts onto unpriced links,
congestion may simply be displaced to other parts of the city. If, instead, overall volumes fall,
traffic conditions may improve more broadly. Despite the importance of these spillovers, most
prior evaluations of congestion pricing have primarily focused on traffic within the cordon zone
only (e.g., Leape, 20006; Eliasson et al., 2009), where the effect sizes are often large enough to
detect even with more limited data. In this section, we show that congestion pricing in NYC
also increased speeds on segments outside the CBD, resulting in lower observed travel times on

trips throughout the NYC metropolitan area.

5.1 Road Speeds outside the CBD

To quantify the effects of spillovers to roads outside the CBD, we first develop a measure of the
extent to which each road segment is exposed to the policy. The intuition behind our measure
is simple: segments that are frequently traversed as part of CBD trips are more exposed to
reductions in the number of CBD trips than segments that are rarely part of such trips.

We formalize this idea with the following measure of co-occurrence between each segment
and the CBD of its metropolitan area. Let Scgp be the set of segments within a CBD, and
let R be the set of observed trips in the relevant metropolitan area within a given time span.
Each trip R; = {s1,...,sn} consists of a set of segments s;, j =1,..., N traversed between its

origin and destination. For each segment s, we define its co-occurrence with the CBD Cj as:

:|{Ri€R|S€Ri/\SCBDmRi7é¢}| (4)
{Ri€ R|s€eR}| '

Cs

In other words, C; is the fraction of trips that passed through segment s, that also passed
through at least one of the CBD segments during the period of observation. We compute the
co-occurrence of each segment in NYC and each of our control cities with respect to its relevant
CBD using data from September to November 2024, and hold these values constant throughout
our analysis. Figure C.2 plots the spatial distribution of road segments in NYC by their level of
co-occurrence. Roads closer to the CBD and highways leading toward the CBD tend to exhibit
higher levels of co-occurrence.

Our definition of co-occurrence provides a natural benchmark for evaluating spillover effects.
If there were no diversion of driving to nearby areas and decreases in entries were proportional
to pre-policy volumes, then co-occurrence would exactly predict the policy’s impact on volumes.
For instance, if a road segment had 50% co-occurrence with the CBD and the congestion pricing
policy reduced CBD entries by 10%, then we would expect that road segment to have 5% fewer
vehicle traversals after congestion pricing was implemented.

Figure 4 plots average ATTs over the first six months of congestion pricing, split by co-
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occurrence quintile and road type (i.e., arterial, highway, and local roads, or a traversals-
weighted average of all three). In each case, we estimate the treatment effects using the approach
outlined in Section 3.3, in which we form a synthetic control by combining segments from other
cities with the same co-occurrence quintile and road type. Across all road types, the average
non-CBD road segment with an 80-100% co-occurrence—that is, a segment for which 80-100%
of traversals pertained to trips going to or from the CBD prior to the policy—experienced a
13.5% increase in speeds. The effects then decrease monotonically with co-occurrence, but even
road segments with 0-20% co-occurrence experienced a 1.7% increase in speeds.

The estimated treatment effect on roads with 80-100% co-occurrence is larger than the
estimated effect on speeds within the CBD in both relative and absolute terms. A breakdown
of treatment effects by road type illustrates that this is primarily driven by the large share
of highway segments in the 80-100% co-occurrence bin than in the CBD. The ATT for the
highways in the highest co-occurrence bin, which include many of the major entrances to the
CBD (e.g., the Lincoln and Holland Tunnels), was over 15%."® As the average pre-policy speed
on highways with 80-100% co-occurrence was 21 mph, this effect translates to a 3 mph increase
in average speed on the highway segments themselves and a 2 mph increase on all roads with
80-100% co-occurrence overall. By contrast, the implied average increase in road speeds within
the CBD, for which speeds started from a much lower baseline, was only about 0.7 mph.

At all levels of co-occurrence, the effects on speeds tended to be larger for highways and
arterial roads than on local roads. Even highways and arterial roads with 0-20% co-occurrence
with the CBD experienced an average increase of 0.8-1.5% in speeds. Highly exposed local
roads, such as those with 80-100% co-occurrence just above the northern border of the CBD at
60th St., experienced a similar increase in speeds to those inside the CBD. Farther away, local
roads were generally less affected than highways and arterials; however, the data is sufficiently
rich to detect even a 0.5% increase in average road speeds on local roads in the 0-20% co-
occurrence bin.

Overall, the evidence suggests broad improvements in traffic conditions outside the CBD,
with the largest gains on the main approaches into and out of the CBD and significant ef-
fects extending across much of the network. We find no evidence of offsetting slowdowns on
different road types or co-occurrence levels, suggesting that the policy reduced overall traffic
volumes rather than simply displacing congestion to untolled roads. However, aggregating by
co-occurrence may mask variation across neighborhoods, and concerns remain that some areas

could face increased traffic. As we discuss in Section 5.3, we also find little evidence of offsetting

13This is consistent with early evidence from the Congestion Pricing Tracker, which showed larger changes
in speeds on bridges leading into the CBD than within the CBD itself (Moshes and Moshes, 2025). There are
only a few highway segments within the CBD itself, as the FDR Drive and West Side Highway connections to
West, Street are exempt from congestion pricing unless drivers exit into the CBD. The CBD highway segments
include just the exit/entry segments connecting highways to the CBD.
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effects in neighborhoods of different income levels or in specific areas such as the Bronx and

New Jersey.
Figure 4: Effect on Speeds by Co-Occurrence and Road Type
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Notes: This figure documents treatment effects split by levels of co-occurrence and type of road segment. Each point is
separately estimated using the average speeds in two-hour bins for segments with the corresponding level of co-occurrence
and road segment type for both NYC and the comparison cities. Vertical bars represent 95% confidence intervals. Standard
errors are clustered at the city-level.

5.2 Effects on Trips throughout the Metro Area

The spillover effects documented above at the segment level raise the question of how congestion
pricing affected conditions for entire trips across the region. Travelers experience congestion
not segment by segment but as the cumulative outcome of their journeys, and welfare ulti-
mately depends on trip-level costs (Arnott, de Palma and Lindsey, 1993; Small, Winston and
Yan, 2005). We classify trips into one of four categories depending on whether the origin and
destination fall inside or outside the CBD: to CBD, from CBD, within CBD, and outside CBD.
For passenger cars, only trips that start outside the CBD and enter the CBD (“to CBD”) are
subject to pricing, but all trips may be indirectly affected through the network spillovers docu-
mented above.'* For each trip type, we again use the GSC approach to estimate the treatment
effect of congestion pricing on log average speeds over the entire trip.

We find that congestion pricing increased speeds not only on the priced trips to the CBD,
but also on unpriced trips traveling within, from, and outside the CBD. Figure 5a plots the

ATT on log average trip speeds within each origin-destination category. The policy increased

Note that trips that start outside the CBD and pass through it are also priced, even if their ultimate
destination is outside of the CBD. We include such trips in the definition of ‘to CBD.’
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speeds on trips to or from the CBD by 6-8% and speeds on trips within the CBD by about
5%. Even trips that took place entirely outside the CBD experienced modest gains of roughly
1%. While small in magnitude, these improvements apply to the majority of trips in the metro
area and add up to a substantial aggregate impact.

To examine the spatial pattern in more detail, we estimate effects across a 5-by-5 ori-
gin—destination matrix based on distance from the CBD (Figure 5b)."® We classify all origins
and destinations based on the within-city percentile of their distance to the CBD. This dis-
aggregation shows the largest gains for trips directly involving the CBD, but also nontrivial
improvements for trips connecting outer areas. Trips traveling between the 0-20% distance bin
and 60-100% bin experienced speed gains of 1-2% in each direction. Disaggregating ODs to
this level also lets us detect small changes even in trips on the outskirts of the metro area.'®
For trips within the 60-100% distance bin, for example, we estimate a treatment effect of 0.6%.
As we discuss in Section 6, these changes on unpriced trips—including the small gains on the
many trips entirely outside of the CBD—have first-order implications for the policy’s net welfare

impact.

5.3 Distributional Effects

Proposals to implement congestion pricing often face concerns over potential adverse impacts
on specific groups, such as residents of specific areas or lower-income drivers (FEcola and Light,
2009; Taylor, 2010). We estimate heterogeneous effects across income groups and geographic
areas to assess whether the effects of congestion pricing in NYC were unevenly distributed. For
each region, Figures 5c¢c and 5d documents the treatment effects on three outcomes: average
speeds for road segments within the region, average speeds on trips to the CBD that originate
in the region, and average speed on trips from the CBD that end within the specified region.
Because the spatial distribution of these regions may relate to CBD travel differently across
cities, we use the set of all corresponding regions in each of our control cities as potential
controls (e.g., the controls for the ATT on the bottom income quintile are all income quintiles

in other cities).

Household income. We begin by comparing effects across the neighborhood income distribu-
tion. We group Census tracts into within-city quintiles based on their median household income
in the 2019-2023 American Community Survey (ACS), which range from roughly $44,500 in

I5Figure B.3 replicates the figure for log estimated fuel economy on trips within each OD pair. Most OD
pairs showed estimated fuel economy gains of 0.5-1.5%.

16Disaggregating the data to lower levels also creates more potential controls in other cities, giving the GSC
approach more flexibility to build a synthetic control based on contemporaneous outcomes in other cities (e.g.,
here the outcomes in the 40-60% bin in Atlanta can enter as a control for the 60-100% bin in NYC separately
from traffic outcomes on roads in the 60-100% bin in Atlanta).
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Figure 5: Effect on Trip Speeds throughout NYC
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the bottom quintile to $182,000 in the top.

We find broadly similar treatment effects on tracts across the income distribution. If any-
thing, the largest gains occurred in lower-income areas — road segments in the bottom quintile
experienced speed increases of 3.2%, compared with slightly smaller gains for segments in
higher-income tracts. Trips traveling to or from the CBD from any income quintile experienced

a 7.5-9% increase in speeds, with no significant differences in effects across quintiles.

Specific regions of interest. We next examine effects across specific geographic areas. In
New Jersey, average speeds increased by 4.7% on road segments in Hudson and Bergen Counties,
the two counties most directly connected to Manhattan. Trips from these counties to the CBD
became 10.5% faster, while trips from the CBD to these counties became 9.7% faster. Within
New York City, roads inside the Bronx became 2.8% faster, and trips to and from the CBD
became 5.5% and 5.9% faster respectively. Finally, Long Island roads also became slightly faster
on average, increasing in speed by 2.3%, and travel between Long Island and the CBD became

significantly faster; trip speeds to and from the CBD increased by 7.4% and 7.2%, respectively.

6 Driver Welfare

The implementation of congestion pricing in NYC increased speeds across the metropolitan
area, such that many trips benefited from the speed increase without incurring a higher price.
In this section, we conduct a simple stylized exercise to bound the welfare effects resulting from
speed increases for trips between different origins and destinations. We combine these estimates

to bound the net welfare impact of the congestion pricing policy on trips by private passenger
vehicles and taxi/FHVs.

Pre-Policy Utility Consider an individual who would typically drive between an origin o
and destination d during peak hours prior to the implementation of congestion pricing, which
we will denote as period 0. On an average day, the individual would face a travel time t2;, a
cost of driving p?, that includes tolls, gas, depreciation, etc., and some baseline value for taking

the trip &,;. We assume that these elements enter the driver’s utility linearly:
Ugy = Eod — Dog — W X Log. (5)

Here, we normalize the marginal value of the cost of driving to 1 such that the coefficient on
travel time w can be interpreted as the Value of Travel Time (VOTT) in dollars per unit of
time.

There may be many individuals who would take trip (o, d) if it were sufficiently attractive

relative to their next best option. We assume that each individual ¢ considering a trip had
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an idiosyncratic outside option utility 5?700[. By revealed preference, individuals who took trip

0
i,0d)

did not take the trip preferred their outside option instead. Note that for simplicity, we define

(0,d) prior to the policy preferred it to their outside option, v, > &V .. while individuals who
a trip by its origin and destination such that the choice of whether to take the trip or not is
binary and switching modes is not explicitly considered, and we assume that the baseline value
of taking the trip &,4 is fixed over time. Because we do not place any restrictions on the outside
option utilities, the outside options could include other modes of travel that may become more
or less attractive relative to the baseline over time. As such, this assumption does not play an

important role in our analysis.

Post-Policy Utility The congestion pricing policy had two major effects on the travel con-
ditions faced by individuals: 1) if the trip required entering the CBD by vehicle, then the
cost of driving increased by the congestion toll amount Ap,q; and 2) the average travel time
t decreased by an origin-destination-specific amount At,4.!" Because all trips—defined as the
OD pairs in Figure 5h—became weakly faster on average (i.e., At,q > 0), the utility that an
individual would obtain for taking the same trip after the policy was implemented, which we

will denote as period 1, is bounded from below as follows:

by > Eoq — (P2 + APod) — w X (12 — Atog). (6)

For some individuals, these changes pushed them over the margin of deciding whether to

take a trip or not. Individuals for whom the post-policy utility of taking their trip was higher

1
i,0d)

even if they hadn’t taken the trip before. Conversely, individuals for whom u,, < ¢; ,, may

than their next best option, ul, > ¢ may have switched to taking the trip after the policy,

have switched to taking their outside option even if they had been taking the trip before.

Bounding Welfare Contributions The net change in welfare from the policy is given by
the difference in the sum of utilities for all affected individuals. For each trip (o,d), these
individuals comprise three groups: those who took the trip before the policy, and continued to
do so afterward; those who did not take the trip before the policy but started to afterward;
and those who took the trip before the policy but stopped doing so afterward.'® For each of
the individuals who continued to make the same driving choice, the difference in utilities is just
ul, —u®,. For the remaining individuals who switched either towards or away from their trip,

the difference in their utilities relies on a comparison with their outside option.

17 Auxiliary costs, such as gas, may have also decreased as a result of the improved fuel economy; however,
we set aside any non-toll price changes for our main welfare analyses.

18We assume that any trips that are unaffected by either the congestion toll price or the change in road speeds
experienced no change in utility as a consequence of the policy.
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Denote 5?)617 + as the average outside option utility for individuals who only started taking
the trip after the policy and 5éd,— as the average outside option utility for individuals who
only took the trip prior to the policy but stopped afterwards. The average difference in utility
obtained by the new trip takers is given by u!;, — E?)UL 4+ Similarly, the average difference in
utility obtained by the former trip takers is given by ééd’_ —u2,. We cannot credibly estimate
the change in trip volumes due to the policy using our data, and so we cannot infer the values of
£04.+ and £, _ in order to compute an exact welfare impact. However, we can bound the welfare
contribution of each trip based on pre-policy volumes, assuming that an individual would only
start (stop) taking a given trip if it now provided higher (lower) utility. This approach is similar
in spirit to the “social savings” argument of Fogel (1964). We describe the bounds formally

here; Appendix B.2 offers a graphical illustration of the argument.

Formal Bound Derivation Let N2, be the number of individuals who took trip (o, d) prior
to the policy, and let N Olc’ls, N;Cfr, and N, ;C’l_ be, respectively, the numbers of individuals who
stuck with their driving choice, newly started taking the trip, and stopped taking the trip after
the policy. The net contribution of trip (o, d) to the welfare impact of the policy is then bounded

from below as follows:

AWoa = Noi° X (uhy — udy) + (Noy") x (uby — 52d,+) + (N,y7) X (Cod— — Upy) (7)
> Nld X (Uid - u(o)d) + (Nolfj—) X (5(1;d,7 - ugd) (8)
2 NldS X (Ugy — tigg) + (Nold_) X (Ugy — tpg) (9)
> Noy X (Ugq = tpg) (10)
> N2 X (W X Atog — APog)- (11)

Here, line (7) breaks up the net welfare contribution between individuals who took trip (o, d)
prior to the policy and continued to do so afterward, individuals who only started taking the
trip after the policy, and individuals who only stopped taking the trip after the policy. For
individuals who newly started taking the trip, uj; — &5, , must be greater than zero by revealed
preference, yielding the inequality in line 8. For individuals who newly stopped taking the trip,
E4q Mmust be greater than ug,, yielding the inequality in line (9). Line (10) is given by the
accounting identity NO, = N* + Nb= — NL* Line (11) results from subtracting equation (5)

from inequality (6).
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Bounding Net Welfare The net welfare impact of the policy across the metropolitan area

is given by the sum of welfare contributions across all OD pairs:
AW =) AW, (12)
o d

Applying the inequality from line (11) we obtain the following lower bound on the net welfare

impact:
AW > 3 " [ND X (w X Atog — Apog)] - (13)
o d

Connecting to Data. To estimate the bounds empirically, we limit our attention to welfare
on trips by passenger vehicles and taxi/FHVs, setting aside effects on other road users (e.g.,
buses and commercial trucks) and how the city uses the toll revenue. In practice, the toll
revenue has been committed to improvements to public transit in NYC, and speeds for other
road users have also increased. Both of these suggest that our lower bound on welfare would
likely increase by accounting for revenue recycling and other road users, although for the latter
it depends on other road users” VOTT and the share traveling on priced trips.

As in Figure 5b, we group origins and destinations by five bins based on their distance to

the CBD. For each OD pair, the effect of congestion pricing on travel time is given by
Aty = Toq ¥ (1 - exp(—mod>) (14)

where ATT oa are the estimated ATTs on trip speed from Figure 5b and f,4 is the pre-period
average travel time. We assume that passenger vehicles and taxis are affected by road speed
improvements in the same way, so that A/zid does not depend on the vehicle type. To estimate
the change in tolls (Kp;g), we use data from the MTA on CBD entries by vehicle class and
entry point to compute the average congestion fee paid by passenger vehicles and taxi/FHVs.
For passenger vehicles, we assume they enter a single time per day (i.e., we do not amortize
their per-day cost across entries) and compute the average price net of any rebates for entering
certain already-tolled entries.’

To estimate the pre-period trip volumes N?, for each vehicle type, we use volumes reported
by Replica, a company that combines a variety of data sources (e.g., GPS devices, sensors

embedded in roads, taxi/FHV companies, and administrative data) to simulate mobility pat-

9Drivers entering via the Lincoln Tunnel, Holland Tunnel, Queens Midtown Tunnel, Hugh L. Carey Tunnel
receive a $3 ‘crossing credit’ so pay an effective price of $6 to enter the CBD, while drivers entering via the other
entrances pay the full amount. We compute the weighted average price paid using the total passenger vehicle
crossings for each entry (MTA, 20250). We do not account for the additional 50% discount that low-income
drivers can receive for trips after their first 10 trips each month.
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terns throughout entire metro areas. Replica’s primary customers are in the public sector, and
include the MTA and other transit organizations. We use their estimated tract-to-tract travel
flows by passenger vehicles and taxi/FHV for the NYC metro area for a typical weekday and
weekend day in 2024 Q4, which we scale up to the full week and then sum across tracts in each
of our origin-destination groups. For trips that enter the CBD, we supplement the data from
Replica with data on CBD entries from the MTA (MTA, 2025b). The estimates by Replica
are below the reported CBD entries by the MTA for 2024, so we scale the counts of trips to
the CBD from Replica up to exactly match the aggregate entries reported by the MTA. We
describe this process further in Appendix B.1.

The final component needed to estimate the welfare bounds is a VOTT (w). We use $40/hour
as a benchmark, which is approximately the average hourly wage in the NYC metropolitan area
(BLS, 2025). We also identify several threshold VOTT values that would change the qualitative

interpretation of our analysis.

Estimated Welfare Bounds. For private passenger vehicles, we find that aggregate driver
welfare increased by at least $12.0 million per week, with the positive welfare gains coming
entirely from unpriced trips. Figure 6a plots the per-trip welfare gain for each of the OD pairs.
The average passenger vehicle trip to the CBD paid $7.9 to save just 3.1 minutes, which, with
a VOTT of $40/hour, adds up to a total welfare change of at most —$9.4 million across the
1.61 million trips to the CBD each week. For these trips, the average driver would only be
guaranteed to be better off on this trip following the implementation of congestion pricing if
her VOTT were above $153/hour, although these drivers likely also take other unpriced trips
(e.g., when they leave the CBD). Unpriced trips from, within, and outside the CBD save an
average of just 11 seconds per trip, but there are far more unpriced trips than priced trips.
Across the 180.4 million weekly unpriced passenger vehicle trips, these time savings add up to
a welfare gain of at least $21.4 million per week. Taking into account both priced and unpriced
trips, the ‘break-even’ VOTT—i.e., the VOTT where the time savings of all drivers exactly
offset the prices paid by paying drivers—for passenger vehicle trips is at most $21 /hour.
Passengers of taxi/FHVs enjoy similar time savings but at a lower price than passenger
vehicles, assuming that the only effect of the policy on their cost is the congestion fee itself.
For these trips, the toll on any travel to, from, or within the CBD was set at $0.75 for taxi and
$1.50 FHV after the policy was implemented. The vast majority of priced trips are by Yellow
cabs, so the average price paid across all taxi/FHV trips is $0.78. Thanks to the cheaper
congestion fees, both priced and unpriced taxi/FHV trips experienced an aggregate net welfare
gain. The estimated lower bounds for per-trip welfare gains are highest for trips going to the
CBD, which offered the most time savings. Welfare gains for Taxi/FHV trips within the CBD

itself were small, because the ex-ante shorter trip durations translated to smaller time savings.
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The break-even VOTTs are $19/hour for the average priced trip and $17/hour for unpriced
trips. There are fewer taxi/FHVs trips than private passenger vehicle trips, but the gains for
taxi/FHV passengers still add up to $2.3 million per week.

In total, our estimates suggest that the congestion pricing policy had a positive net welfare
impact of at least $14.3 million per week for passenger vehicle drivers and taxi/FHV passengers,
driven almost entirely by the large welfare gains on unpriced passenger vehicle trips. Across
both passenger vehicle drivers and taxi/FHV passengers, the net welfare is positive so long as
drivers value their time at $20/hour or more. These welfare gains do not take into account the
value from the revenue that is raised or any environmental benefits. The implied peak hour
revenue from the CBD entry counts and average prices is $14 million per week, although this is
only an approximation as it does not account for other vehicle classes, the low-income discount
plan, payment methods (it costs more to pay by mail), or repeated entries in a single day.?’ For
environmental benefits, in Appendix B.3 we show that the implied fuel economy improvements
add up to approximately 74,700 gallons of gasoline saved each week. These savings correspond
to 653 tonnes of COy each week, which, for a social cost of carbon of $185 per tonne (Rennert
et al., 2022), is worth $120,900 in overall welfare. In Appendix B.4, we document all of the
input values for our welfare calculations so that readers can explore the results under alternative

inputs.

7 Mechanisms

The effects of introducing congestion pricing on speeds and travel times depend on three un-
derlying ingredients: 1) how pricing affects volumes throughout the network; 2) the exposure of
other drivers to changes in these volumes (e.g., via the co-occurrence of segments they traverse
with the CBD); and 3) the relationship between volumes and speeds on different road segments.
While we cannot speak to how volumes respond to pricing in each city absent a demand model,
we evaluate how the latter two ingredients contributed to the effectiveness of the policy in NYC,

and whether similar effects may be expected in other cities.

Exposure to changes in volumes. Travel patterns vary across cities, such that the average
trip in different cities may be more or less exposed to any changes in volumes stemming from
the introduction of cordon-based congestion pricing. Consider two extreme travel patterns: one
where all trips to the CBD come from the farthest reaches of the metro area, and a second

where all trips to the CBD begin just outside of its boundaries. In the former case, reducing the

20The MTA reported CBD toll revenues of $159 million for January to March 2025 and operating expenses
of $35.9 million (MTA, 2025a), or about $13.3 million in gross revenue and $10.25 million in net revenue per
week.
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Notes: Each square is shaded by the per trip driver welfare, which are computed using the ATTs on trip speeds, the average
pre-period duration, and the prices. Each ATT is significantly different from zero at the 95% level, with standard errors
clustered at the city-level. The number of trips is the average tract-to-tract passenger car trips or taxi/FHV trips estimated
by Replica for a typical week in 2024Q4. For trips to the CBD, we further scale the estimates from Replica to match
aggregate counts of pre-period entries from the MTA (MTA, 2025b). Average prices are computed based on entries data.
The passenger vehicle price is below $9 because of crossing credits for some entries, and the taxi/FHV price is set between
the per-trip prices for taxis ($0.75) and FHV ($1.50) based on the share of trips in each. The welfare estimates are
computed for each cell separately, assume a Value of Travel Time (VOTT) of $40/hour, and do not include any revenue
recycling. Revenue is approximated as the number of trips multiplied by the average price, setting aside other factors such

Figure 6: Driver welfare estimates
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number of trips to the CBD will have spillovers throughout the metro area, as many non-CBD
trips will travel along segments with high co-occurrence. In the latter case, few segments will
have high co-occurrence, and, while congestion in the CBD itself may improve, we would expect
minimal spillovers beyond the CBD.

We combine our segment-level measures of co-occurrence with data from trips between
origins and destination pairs to quantify how exposed different trips are to changes in CBD
volumes. For each trip type ¢, we measure the average time spent on each type of road segment.
Using the same matrix of ODs as in Figure 5b to define trips, we compute the average co-

occurrence of segments traversed as

_ 1 tis X Cg
€od = |Rod| Z Z t; (15)

i€ER,q SER;

where R,q is the set of observed trips for a given OD pair, each trip R; € R,q is composed
of segments R; = {s1,$2,...,575}, ¢s is the co-occurrence of segment s, and t;; and ¢; are,
respectively, the duration on segment s and the total trip duration.

We further aggregate up to trip types [ € {To CBD, From CBD, Outside CBD}, weighting

by the average weekly pre-period volumes between each OD pair (NIV):?!

> PV
e Zo,d €od X No d
l =

Zo,d vad

(16)

The first three columns of Table 1 document this measure of exposure for NYC and each
of our control cities. Naturally, trips to and from the CBD are more exposed to the policy
than trips entirely outside of the city. Including the part of the trip that is within the CBD,
the weighted average segment-level co-occurrence on trips to/from the CBD ranges from about
50-65%. Across cities, NYC drivers to/from the CBD have some of the largest exposure to
other CBD drivers, second only to Chicago. Outside of the CBD, however, NYC has the lowest
average exposure, and is less than half that of cities like Chicago, Boston, and Atlanta. Cities
with high average exposure on trips from and outside the CBD, such as Chicago, have travel

patterns that suggest greater potential for positive spillovers on the speeds of unpriced trips.

Congestion functions. The next key ingredient is the local relationship between volumes
and speeds. If all roads are already operating under free-flow conditions, then further decreases
in CBD volumes would have no effect on travel times. The empirical relationship between speeds
and the volume (or density) of cars is often used by traffic engineers to evaluate the effects of

past and potential changes to traffic flows (Greenshields et al., 1935; Greenberg, 1959; Seo et al.,

21'We focus just on passenger vehicle trips for this exercise, as taxis are a small share of the non-NYC markets.
The results look similar when taxi/FHV trip counts are included.
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2017), and is referred to as the ‘congestion function’ of a road. Congestion functions will vary
across roads based on their physical characteristics (e.g., width, curvature, and lane structure)
and typical driving behaviors (e.g., spacing between cars). A curvy road full of potholes will
operate at slower speeds for a given density of cars than a well-maintained highway.

We estimate congestion functions for groups of road segments g using samples of simulta-
neous speeds v, (in miles per hour) and densities p, (in vehicles per lane-mile). Our data cover
only a sample of cars on the road, so we cannot directly observe total volumes to measure
road density exactly. Instead, we infer density by assuming a constant scaling factor on ob-
served traversals and normalizing relative to the maximum density observed for a group of road

segments. We then fit the following functional form, taken from the Bureau of Public Roads

(BPR): 1 L[1+a<&>5] an

Vg UFF K
In this specification, vpp denotes the free-flow speed, ps is the inferred density of vehicles on the
segment, k is the capacity (the density at which congestion has a significant effect on speeds),
« is a scaling parameter, and § governs the curvature.

We estimate separate congestion functions for each combination of road type and co-
occurrence bin in each of our cities.??
the CBD and 60-80% co-occurrence bins by road type in NYC; the other NYC congestion

functions are shown in Figure C.3. The circles along each congestion function curve represent

Figures 7a and 7b plot the congestion functions for

peak hour speeds on the average day prior to the policy’s launch, and the triangles represent
the post-policy speeds computed as the pre-period speeds times one plus the estimated ATT
for this road type and co-occurrence bin.

This sample of congestion functions illustrates a few key points that are generally true
across most cities and co-occurrence bins. First, congestion functions for local and arterial
roads are lower in both levels and slopes than those for highways, so reductions in density
have more limited effects on speeds. Second, congestion functions for some roads—especially
highways—are non-linear, and the effects of any changes in density depend on the slope at the
relevant levels of density. A highway that is already operating near the speed limit will see
little gain from further reductions in density, while a highway operating at a steep point along
its congestion function may see large gains from relatively small reductions in density.

To compare the potential for volume changes to affect speeds in each city, we measure

22These congestion functions are subtly different than those studied in traffic engineering, because we use
data from a collection of heterogeneous road segments within a group rather than a single segment. As a result,
different levels of density in our data may correspond to different patterns of crowding across roads — some
segments may be near free-flow while others are heavily congested. The estimated function should therefore be
interpreted as a reduced-form mapping between average speeds and average densities, rather than a physical
law of traffic flow on a particular road.
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Table 1: Potential for Effects in Other Cities

Avg. exposure (¢;)

Avg. elasticity of CF (7).

City To From Outside To From Outside
CBD CBD CBD CBD CBD CBD
NYC 57.6%  58.7% 3.0% -0.422  -0.430 -0.270
Philadelphia 54.6%  54.9% 3.2% -0.254  -0.250 -0.215
Chicago 62.2%  62.7% 7.1% -0.325  -0.320 -0.170
Boston 55.4%  55.5% 7.6% -0.387  -0.384 -0.205
Atlanta 51.1%  51.8% 7.4% -0.336  -0.334 -0.239
Baltimore 49.6%  49.8% 5.3% -0.255  -0.254 -0.214

Notes: The first three columns document the average exposure to the policy for trips to, from, and outside the CBD, measured
as the weighted average co-occurrence of segments traversed with weights corresponding to the average duration on each
segment. The latter three columns document the average elasticity of the congestion functions (CF) of roads traversed on

each trip type, again weighting by the average duration spent on a given segment type.

Figure 7: Example Congestion Functions
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Notes: This figure plots estimated congestion functions for roads in NYC. The congestion functions are estimated using
pre-period observed speeds and densities, as shown in Equation (17). Circles are added to each line based on the raw
average speed before the policy’s implementation. Triangles are based on the post-period speed, which is computed using

the estimated ATT on speeds.
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the elasticity of congestion functions on low- and high-co-occurrence roads, evaluated at the
average pre-period densities. To further aggregate trips along these segments, we average
across origin-destination pairs and weight by the average duration on roads corresponding to a
given congestion function. More concretely, for a given OD pair we estimate the average local

elasticity of the segment types that trips in that OD traverse as:

R (o)t )
Tod = Fer ’
Zc Zr 2fod

where v..(+) is the estimated congestion function for co-occurrence bin ¢ and road type 7, pe, is

(18)

the corresponding pre-period average density, and ¢, is the average pre-period duration spent
on this co-occurrence bin and road type combination for trips in a given OD pair. As in Equa-
tion (16), we further aggregate up for each trip type [ € {To CBD, From CBD, Outside CBD}
with weights corresponding to the number of pre-period passenger vehicle trips in a given OD
pair (NFPV).

The last three columns of Table 1 document 7; for each city and trip type. Prior to the
implementation of congestion pricing, NYC roads traversed by drivers on trips to, from, and
outside the CBD were operating at steeper parts of their respective congestion functions than
roads traversed by drivers on similar trips in each of the other cities. This is especially true of
roads on trips to and from the CBD, which were about 10% more locally elastic than the next
closest city (Boston) and nearly 70% more elastic than the lowest ranked city (Philadelphia).
Roads traversed on trips outside the CBD were also operating at more elastic parts of their
respective congestion function in NYC than in any other city, often by similarly large relative
differences (although smaller absolute magnitudes).

These average elasticities of the congestion functions suggest that the effects on time savings
of introducing a cordon-based congestion price may have been uniquely large in NYC relative
to our control cities. However, while roads outside the CBD in NYC were modestly more
elastic than in other cities, the relative differences are smaller than the differences in exposure
to CBD trips for drivers on trips outside the CBD. For these unpriced trips entirely outside
of the CBD—which contribute substantially to overall welfare—the average exposure in NYC
was half that of some other cities. Thus, while speeds on trips to/from the CBD in other cities
would likely be less affected by any change in volumes than in other cities, spillovers on trips
outside their respective CBDs may be larger if higher exposure offsets the lower elasticities.

Finally, the influence of exposure to CBD trips and congestion function elasticity depends
critically on the nature of the demand response to congestion pricing. Although we cannot
observe this directly in New York, our results are consistent with a largely extensive margin

response in which drivers to the CBD substituted to other modes of transportation rather than
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driving to other nearby locations. If drivers in other cities were to respond in other ways—
for instance, because alternative modes of transit are less appealing—then the nature of both
the direct effects and the spillover effects of cordon-based congestion pricing might be quite
different.

8 Conclusion

The introduction of congestion pricing in New York City offers new evidence on how cordon-
based pricing can reshape urban mobility in ways that extend well beyond the tolled area.
While the policy had the expected direct effect of increasing road speeds inside the CBD, we
find that the greatest welfare gains arise from spillovers onto unpriced trips outside of the
CBD. Although the impact on travel times for any single trip outside of the CBD was small,
the number of trips outside the CBD is much larger than the number of trips to, from, or within
the CBD. As such, our findings suggest that evaluations limited to the cordon area itself would
significantly understate the welfare gains of congestion pricing.

The welfare implications also underscore a tension central to the political economy of con-
gestion pricing. Priced drivers face salient, concentrated losses unless their value of time is
very high, while unpriced travelers enjoy diffuse, less visible benefits. Distributionally, we ob-
serve broadly similar speed improvements across neighborhoods with varying household income
levels, as well as in specific areas of interest, such as New Jersey.

Whether similar effects can be expected in other cities depends, in part, on the distribution
of travel patterns in each city and the centrality of roads leading to and from each city’s CBD
in its road network. On one hand, many roads in NYC operated on steep portions of their
congestion functions prior to the policy, so even small reductions in volumes could produce
outsized speed gains that affect a large share of unpriced trips. On the other hand, trips
outside the CBD in NYC also tend to be less exposed to CBD-bound trips than similar trips
in other cities. Cities like Chicago and Boston—where trips outside the CBD are over twice
as exposed to CBD trips—may see larger spillovers throughout the metro area. Moreover,
the influence of exposure and congestion function elasticity depends on whether driving trips
affected by congestion pricing are replaced entirely or modified to use other roads. Whether a
cordon-based congestion price similar to NYC would generate a similar type of demand response

in other cities remains an open question.
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A Data Appendix

A.1 CBD Definitions

Table A.1 contains references to the CBD definitions we use for the control cities and New York
City. Each links to a snapshot of the corresponding web page on the Internet Archive. This

avoids links breaking due to website changes of the city-affiliated organizations from which we
derive the CBD definitions.

Table A.1: CBD Definitions Overview

Link City name Defined by CBD shape

ey Atlanta Atlanta Downtown The “Downtown Boundary”.

& Baltimore Downtown Partnership of Baltimore The “Downtown Management Authority” shape on page 5.
& Boston City of Boston The outline of the “Downtown” neighborhood.

& Chicago City of Chicago The “Downtown Zone Area”.

& New York City Metropolitan Transportation Authority The outline of the “Congestion Relief Zone”.

ey Philadelphia Center City District Philadelphia The boundaries of the district on page 8.



https://web.archive.org/web/20250207152908/https://www.atlantadowntown.com/adid/about
https://web.archive.org/web/20240126120604/https://godowntownbaltimore.com/wp-content/uploads/2023-Annual-Report.pdf
https://web.archive.org/web/20241210214350/https://www.bostonplans.org/getattachment/64c37bd1-21ac-4ec1-9e3b-5fdbcc135823/
https://web.archive.org/web/20241010042054/https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.html
https://web.archive.org/web/20250206205439/https://congestionreliefzone.mta.info/
https://web.archive.org/web/20250211003205/https://cdn.ymaws.com/www.plta.org/resource/resmgr/enews/PhilaIDGuideJuly22.pdf

A.2 Estimating Fuel Efficiency

We evaluate the environmental impact of this experiment by measuring fuel consumption rates
on road segments. CO, emission rates then naturally arise from these estimates of fuel con-
sumption, as carbon emissions are typically modeled as proportional to the fuel consumption
in transportation settings (Department for Energy Security and Net Zero, 2023). Since direct
measurements of fuel or CO, emissions are impractical, we use scalable methods for estimating
fuel consumption rates instead.

Fuel consumption modeling has been widely studied in the literature (Faris et al., 2011).
Models of this form roughly fall into two categories: principled models (Faris et al., 2011), which
aim to model the physics underlying energy usage, and empirical models (Department of En-
ergy , DOE; Ersal et al., 2012; Department of Energy , DOE), which fit non-parametric models
to ground-truth fuel consumption data. For our purposes, we integrate models from the Na-
tional Renewable Energy Laboratory (NREL), which fall roughly under both categories. These
models at their core rely on FASTSim (Brooker et al., 2015), a physics-based simulator (hence
a principled model) which calculates the power required to meet a given drive cycle speeds
provided other inputs such as road grade and vehicle specifications such as drag, transmission,
and rolling resistance. Its methodology and data are validated from dynamometer testing data
via collaboration with other labs (e.g., Argonne National Laboratory), so this is a high-fidelity
model with many parameters to calibrate towards specific vehicle models. However, FASTSim
requires significant computational power and high-frequency GPS location data, which makes it
challenging to run for all segments or trips. To address this issue, we use an empirical machine
learning model on top of FASTSim, similar to NREL’s RouteE model (Holden, Reinicke and
Cappellucci, 2020). This family of models significantly reduces the computational burden and
works well with segment-level speeds, eliminating the need for high-fidelity GPS location data.
The ML-based model takes as features the properties from segments and estimates the fuel con-
sumption for each segment. Features commonly used by these models include the segment-level
speeds, road grade, and length.

Figure A.1 depicts the empirical relationship between speed and fuel consumption on one
class of roads, which is used to model the overall relationship. Notably, the convex shape of
the model is a commonly known feature by energy modeling practitioners, and denotes that
vehicles operating at intermediate driving speeds generally experience the highest levels of fuel

efficiency.

A.3 PurpleAir Pollution Measures

For each city, we collect hourly PMs; CF1 and relative humidity readings for all PurpelAir

sensors in the corresponding CBSA. For redundancy, each sensor includes two independent



Figure A.1: Example Speed-Fuel Consumption Rate Curve
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Notes: This figure documents an example of the empirical relationship between speeds and fuel consumption for one class of
roads. Similar data are used to model the overall relationship on various roads and road conditions.

measurement channels, labeled as “A” and “B” channels. We fill in missing relative humidity
readings of any one channel with the readings from the other channel and censor any outlier
PM, 5 values larger than 300 pg/m3.

We follow EPA’s PurpleAir data calibration methodology to improve the quality of our air
pollution data (Barkjohn et al.; 2022), taking the following steps to build a dataset of sensor-day
level PM; 5 level.

1. We drop records for which the difference between the A and B channel PM, 5 values are
greater than 5 1g/m? or the relative percentage difference is greater than 70% (computed

with the lowest value in the denominator).

2. Still following Barkjohn et al. (2022), we compute the quantities

z1 = 0.524 PMys oy — 0.0862 RH + 5.75
xy =4.21-107* PM3 ;5 ., + 0.392 PMys, ray + 3.44 (A1)
x5 = 0.0244 PMys 1oy — 13.9,

where PMy 5 ay is the raw hourly CF1 PMjy5 channel reading and RH is the relative

humidity channel reading;

We then use these values to compute the estimated hourly PMs 5 for a specific channel in



a given sensor as

1 if PM2,57 raw < D70
PM2.5 =\ (1 — 173) + ToT3 if 570 < ].:’1\/.[2.57 raw < 011 (A2>
i) if 611 S PM2.5’ raw

3. We aggregate to the sensor-hour level by taking the average of the channel-specific ad-
justed levels of PM, 5, or taking the value of just one of the two channels’ hourly adjusted

PM, 5 levels when it is missing for the other channel.

4. Finally, we compute the daily adjusted PM, 5 averages, dropping any comprising of fewer

than 18 hours of observations.

The outcome variable we use in our analysis of the air pollution effects in the NYC CBD
is that of sensor-date level PMs 5. Some sensors are missing information for one or more days.
We impute missing sensor-date PMs 5 values using a regression with sensor x month-of-sample

and sensor x day-of-week fixed effects.

A.4 Consumer Spending Data from MBHS3

The data from MBHS3 are aggregated to the zipcode, date, and 3-digit NAICS code level. The
zipcode is based on the merchant’s physical location. The data exclude online transactions.
Table A.2 documents the total number of transactions and aggregate transaction amount by
category. The final three columns subset to zipcodes within the CBD. The average transaction
size in both restaurant and retail categories tends to be higher for merchants in the CBD than
in the overall city. We define zipcodes as lying within a city’s CBD if its centroid is contained
by the CBD boundaries. For NYC, we manually include zipcode 10004. This zipcode includes
Governor’s Island, which pulls its centroid out into the river, but most of its merchants are in
the southern portion of the Financial District. The Baltimore CBD is small and there are no

zipcodes whose centroids lie within it, so we do not report any spending for Baltimore’s CBD.

A.5 Foot Traffic Data from Advan

The raw data from Advan Neighborhood Patterns include the number of stops by GPS devices
at the hour-block group level. We restrict to peak hours and combine across all block groups
within the same Census tract. Figure A.2 plots the average daily foot traffic in the CBDs
of our sample cities. There is a clear drop in all cities at the start of 2025. The drop is

substantial in magnitude—about 30%—and is likely due to a change in the sources from which



Table A.2: Transaction Counts and Amounts: January 2024 - April 2025

All CBD-only
Count Amount  Avg. size Count Amount  Avg. size
City  Category (millions)  (millions $§) ($/trans.) (millions) (millions §) ($/trans.)
NYC Restaurant 164.7 4613.2 28.0 26.1 941.7 36.0
Retail 286.1 13247.0 46.3 39.6 2196.0 55.4
PHL  Restaurant 88.5 2291.9 25.9 3.9 125.3 32.1
Retail 168.6 7549.0 44.8 3.2 115.0 35.5
CHI  Restaurant 114.2 2773.8 24.3 5.8 172.5 29.7
Retail 148.2 7425.8 50.1 3.7 137.5 37.3
BOS  Restaurant 59.2 1433.1 24.2 0.8 25.6 324
Retail 68.4 3390.8 49.6 0.2 15.9 79.2
BAL  Restaurant 61.7 1066.6 17.3 - - —
Retail 58.4 2644.8 45.3 - - -
ATL  Restaurant 141.7 3368.8 23.8 3.6 90.3 25.2
Retail 190.0 8995.0 47.3 1.2 43.2 37.2
Total Restaurant 629.9 15547.4 24.7 40.2 1355.6 33.7
Retail 919.7 43252.4 47.0 47.9 2507.5 52.3

Notes: This table documents the aggregate number of transactions and total spending in the MBHS3 data for zipcodes within
each of the sample cities between January 2024 and April 2025. The Baltimore CBD is small and there are no zipcodes
whose centroids lie within it.

Advan purchases location data. The decline in measured foot traffic is similar in magnitude

and timing across all of our sample cities.

B Welfare Calculations Appendix

B.1 Origin-Destination Volumes

For computing the aggregate welfare effects in Section 6, we need the number of personal vehicle
and taxi/FHV trips between each set of origins and destinations. One limitation of the data
from Google Maps is that we cannot reliably observe volumes, much less changes in volumes
over time. We instead estimate these values for the pre-period (September to December 2024)
using a combination of data from Replica and the MTA.

We start with estimated tract-to-tract flows for a ‘typical’ Thursday and Saturday in the
fourth quarter of 2024 from Replica, an urban data platform company that spun out of Google
in 2019. Replica ingests data from dozens of sources, including location data from GPS devices,
traffic patterns from in-road sensors, administrative data on local demographics, parcel land
use, public transit usage, taxi/FHV trips, travel surveys, and more. Replica then builds full-
population simulations that aim to accurately capture the population and travel patterns of
metro areas. Underlying these simulations are activity-based models trained to match the

‘ground truth’ data (e.g., the number of cars driving over a specific road segment with an



Figure A.2: CBD Foot Traffic
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Notes: These figures plot daily CBD foot traffic, restricted to weekday peak hours (5am to 9pm). The first panel plots the log
total number of visits. The blue horizontal line is the pre-period average for the NYC CBD. The second panel restricts
attention to the three largest cities and plots the difference in log trips between a given date and the 2024 average.

embedded sensor). Key for our use case, Replica estimates the mode choice for each trip,
including separately estimating use of private autos and taxi/FHVs. We aggregate to typical
weekday and weekend flows to the weekly level by multiplying the weekday flows by five and
the weekend flows by two.

We supplement data from Replica with data from the MTA on CBD entries. CBD entries are
an especially important source of welfare in our setting, and the MTA provides realized flows.
First, we use data on realized entries since congestion pricing launched, split by entry point,
10-minute interval, and vehicle class. We use these data to compute the number of taxi/FHVs
(“TLC Taxi/FHV”) and passenger car (“Cars, Pickups and Vans”) entries during peak hours
in the average week. Together, these two categories account for 85% of all entries (Table B.1).
We scale the estimated entries by Replica to exactly match the passenger vehicle and taxi/FHV
counts. Second, as these entries are for 2025 but our desired volumes are those in the absence of
congestion pricing, we further scale each CBD entry estimate up by 13% to match the baseline
CBD entries reported by in MTA (2025). This approach essentially combines Replica data on
the relative distribution of origin tracts for CBD trips with MTA data on the overall levels.
Note that the MTA entries data include priced trips that pass through the CBD en route to
other destinations, which may explain some of the discrepancy in CBD trip levels between the

MTA and Replica counts.



Table B.1: CBD entries by vehicle class

Vehicle class Avg. daily entries Frac. of all entries
Cars, Pickups and Vans 226351 0.596
Taxi/FHV 127678 0.336
Single-Unit Trucks 15492 0.041
Buses 7504 0.020
Motorcycles 1516 0.004
Multi-Unit Trucks 1029 0.003

Notes: This table documents the average entries into the CBD for peak hours between Jan 5, 2025 to June 30, 2025.

Figure B.1: Estimated Weekly Trip Counts
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Notes: These figures plot the log weekly estimated trip counts between bins of origins and destinations. The trip counts are
estimated using a combination of data from Replica and the MTA and reflect pre-congestion pricing flows. The red polygons
indicate priced trips and the green polygons indicate unpriced trips.



B.2 Illustrative Example

We provide an illustrative example of the argument underlying the welfare bounds derived in
Section 6. Figure B.2 illustrates the effects of congestion pricing for a representative priced
and unpriced trip. The y-axes are the cost of the trip, inclusive of the value of the travel
time wt(Qup + @p) and the congestion fee p, setting aside all other costs. Here, the travel
time depends linearly on the quantities of priced (Q),) and unpriced (Q.yp) trips—which is often
not the case for real-world congestion functions—so the average private cost is described by
¢ = wt(Qup + @p) +p. Note that the costs depend on volumes for both types of trips, capturing
that there are spillovers from priced to unpriced. The demand curves Q(c) can be thought
of as the CDF of outside option values (g;) across the population of prospective drivers for a
representative priced or unpriced trip. Although we allow the outside option values to change
before and after the policy in the formal bounds, here we assume that the outside option value

for each driver is fixed such that demand is unchanged pre- and post-policy.

Figure B.2: Hlustration of Driver Welfare Calculations

(a) Unpriced trip (b) Priced trip
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For unpriced trips (Figure B.2a), introducing congestion pricing reduces travel time costs by
wAt. With elastic demand, this would encourage additional driving and move the equilibrium
volume from ng to N&p. The true change in welfare stemming from the policy ChaEg\e is the
area a+b. By using fixed volumes in our welfare calculation, we report welfare of just AW, = a
for unpriced trips, which understates the true welfare gains by the area of b. For priced trips
(Figure B.2b), the countervailing price increase (Ap) offsets the improved travel times (wAt)
and, in this illustration, reduces total volumes. The true change in driver welfare is the area
x. Here, by using fixed volumes, our welfare estimate of AW p = —x — y overstates the true

welfare loss by the area y. The green hashed area denotes the revenue with the new volumes.



B.3 Fuel savings

Figure B.3 documents the ATTs on fuel economy (in liters of gasoline per 100km) for trips
between each OD pair. We compute the aggregate effect on fuel consumption in a similar
manner to how we compute time savings for the welfare calculations. Specifically, for each OD
pair, we multiply the average pre-period estimated fuel consumption (in liters) by the estimated
treatment effect (in percent), excluding ATTs that are not significantly different from zero. We
then sum across all OD pairs, weighting by the number of pre-period passenger vehicle trips
from Replica (NFV). In total, we compute weekly fuel savings of 74,700 gallons per week (on a
baseline of 25.9 million total gallons per week). Using a conversion rate of one gallon of gas to
8.75 kilograms of CO, , the implied CO, savings are 653 tonnes each week. At a social cost of
carbon of $185 per tonne (Rennert et al.,; 2022), this has a social value of $120,900.

Figure B.3: Treatment effect on fuel economy by OD distance to CBD
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Notes: This figure documents the ATT on log fuel economy (1/100km) for trips in each OD pair. Grey hash marks represent
estimates that are not significantly different from zero at the 95% level, with standard errors clustered at the city-level.

B.4 Welfare Calculation Inputs

Table B.2 documents the primary inputs for the welfare estimates presented in Section 6. The
columns correspond to estimated treatment effect on log speeds (A/T\Tod), the average pre-period
duration (f,4), and the volumes (N”,) and average price (p/,). Note that we assume that prices
are equal across all priced trips within a vehicle class and that each vehicle class faces the same

travel times and ATTs conditional on an origin-destination pair.



Table B.2: Welfare estimate inputs

Passenger Vehicles — Taxi/FHVs
Origin Destination A?T\Od tod NPV prY  NERV pFHV
CBD CBD 0.053 23.2 643104 $0 607838 $0.78
CBD 0-20%  0.077 25.4 501032 $0 262957 $0.78
CBD 20-40% 0.067 46.6 295583 $0 100202 $0.78
CBD 40-60%  0.057 53.8 247297 $0 83728 $0.78
CBD 60-100% 0.042 62.2 317983 $0 123129 $0.78
0-20% CBD  0.082 24.8 610386  $7.90 322985 $0.78
0-20% 0-20% 0.019 12.6 7738585 $0 812093 $0
0-20% 20-40% 0.024 15.0 2627617 $0 203010 $0
0-20% 40-60% 0.015 23.3 1508345 $0 129397 $0
0-20% 60-100% 0.010 41.1 1122931 $0 82589 $0
20-40% CBD  0.078 47.1 207671  $7.90 121089 $0.78
20-40% 0-20% 0.024 15.0 2562395 $0 148876 $0
20-40% 20-40%  0.022 13.5 9768322 $0 265182 $0
20-40% 40-60% 0.021 14.9 4112082 $0 133374 $0
20-40% 60-100%  0.010 26.3 1469808 $0 40717 $0
40-60% CBD 0.069 54.5 221190 $7.90 145707 $0.78
40-60% 0-20%  0.016 23.3 1479622 $0 78476 $0
40-60% 20-40% 0.021 14.8 4248147 $0 98916 $0
40-60% 40-60% 0.013 13.6 22665226 $0 385637 $0
40-60% 60-100% 0.011 15.7 6202699 $0 78086 $0
60-100% CBD 0.056 61.5 572317  $7.90 319255 $0.78
60-100% 0-20% 0.019 40.9 1085775 $0 56038 $0
60-100% 20-40% 0.013 26.1 1562846 $0 12879 $0
60-100% 40-60%  0.011 15.6 6613899 $0 31220 $0
60-100% 60-100% 0.006 14.1 103590251 $0 197165 $0

10



C Swupplementary Tables and Figures

Table C.1: Average CBD speeds before and after congestion pricing

Average speeds (mph)

City Road type Before Jan 5, 2025 After Jan 5, 2025
New York All 7.14 8.17
Highway 16.95 18.45

Arterial 7.19 8.31

Local 5.54 6.24

Atlanta All 22.37 22.26
Highway 33.86 33.57

Arterial 11.51 11.36

Local 10.22 10.2

Baltimore All 8.19 8.29
Highway 8.54 8.83

Arterial 8.3 8.28

Local 7.6 7.84

Boston All 13.99 14.82
Highway 32.16 33.11

Arterial 7.09 7.37

Local 6.61 6.79

Chicago All 13.57 13.88
Highway 25.21 26.68

Arterial 10.32 10.43

Local 8.69 8.88

Philadelphia All 8.56 8.77
Highway 35.77 35.01

Arterial 7.93 8.15

Local 6.59 6.71

Notes: This table reports the average volume-weighted speeds on segments in each of the cities used throughout our analyses for
weekday peak hours. The “before” period data starts September 1st, 2024 and the “after” period data ends on June 30th.
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ATT on log avg speed (mph)

ATT on log median speed (mph)

ATT on log avg speed (mph)

Figure C.1: Effects on Additional Road Speed Outcomes
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Notes: This figure replicates Figure 2a for additional CBD traffic measures. Each figure plots day-level ATTs of congestion
pricing over time. The underlying data are two-hour bin outcomes in each CBD. The horizontal blue line is the aggregate
ATT for all post-treatment periods. Shading denotes 95% confidence intervals. Standard errors are clustered at the

city-level.
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Figure C.2: Segments by bins of co-occurrence
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Notes: These figures map the road segments by their level of co-occurrence with the CBD, which is defined as the share of

trips crossing the road segment that ultimately enter the CBD. The first panel plots the distribution of road types by
co-occurrence.
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Figure C.3: Other congestion functions: NYC
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Notes: This figure plots the remaining estimated congestion functions for roads in NYC; see Figure 7 for the CBD and 80-60%
co-occurrence congestion functions. The congestion functions are estimated using pre-period observed speeds and densities,
based on Equation (17). Circles are added to each line based on the raw average speed before the policy’s implementation.
Triangles are based on the post-period speed, which is computed using the estimated ATT on speeds.
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